Travelling salesman problem, Data Structure & Algorithms

Assignment Help:

Example 3: Travelling Salesman problem

Given: n associated cities and distances among them

Find: tour of minimum length that visits all of city.

Solutions: How several tours are possible?

n*(n -1)...*1 = n!

Because  n! > 2(n-1)

Therefore n! = ? (2n) (lower bound)

As of now, there is no algorithm that determines a tour of minimum length plus covers all of the cities in polynomial time.  But, there are many very good heuristic algorithms.


Related Discussions:- Travelling salesman problem

Trees, Have you ever thought about the handling of our files in operating s...

Have you ever thought about the handling of our files in operating system? Why do we contain a hierarchical file system? How do files saved & deleted under hierarchical directories

Which sorting algorithms not have running time of o (n2), Which sorting al...

Which sorting algorithms does not have a worst case running time of  O (n 2 ) ? Merge sort

What is a spanning tree of a graph, What is a Spanning tree of a graph? ...

What is a Spanning tree of a graph? A Spanning Tree is any tree having of vertices of graph tree and some edges of graph is known as a spanning tree.

Explain about greedy technique, Explain about greedy technique The  gre...

Explain about greedy technique The  greedy  method  suggests  constructing  a   solution  to  an  optimization  problem   by  a sequence of steps, every expanding a partially c

How to construct binary tree, Q. A Binary tree comprises 9 nodes. The preor...

Q. A Binary tree comprises 9 nodes. The preorder and inorder traversals of the tree yield the given sequence of nodes: Inorder :          E     A    C    K    F     H    D

Multidimensional array in one dimensional array, Q. By giving an example sh...

Q. By giving an example show how multidimensional array can be represented in one the dimensional array.

Encryption the plain-text using the round keys, Encryption the plain-text u...

Encryption the plain-text using the round keys: 1. (Key schedule) Implement an algorithm that will take a 128 bit key and generate the round keys for the AES encryption/decryp

Estimate cost of an optimal diapath, Normally a potential y satisfies y r ...

Normally a potential y satisfies y r = 0 and 0 ³ y w - c vw -y v . Given an integer K³0, define a K-potential to be an array y that satisfies yr = 0 and K ³ y w - c vw -y v

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd