Travelling salesman problem, Data Structure & Algorithms

Assignment Help:

Example 3: Travelling Salesman problem

Given: n associated cities and distances among them

Find: tour of minimum length that visits all of city.

Solutions: How several tours are possible?

n*(n -1)...*1 = n!

Because  n! > 2(n-1)

Therefore n! = ? (2n) (lower bound)

As of now, there is no algorithm that determines a tour of minimum length plus covers all of the cities in polynomial time.  But, there are many very good heuristic algorithms.


Related Discussions:- Travelling salesman problem

Show that towers of hanoi is o (2n), Question 1 Discuss the advantages of ...

Question 1 Discuss the advantages of implementation checks preconditions Question 2 Write a ‘C' program to search for an item using binary search Question 3 Show that To

Stack, infix to revrse polish

infix to revrse polish

Problem logicall, Given a list containing Province, CustomerName and SalesV...

Given a list containing Province, CustomerName and SalesValue (sorted by Province and CustomerName), describe an algorithm you could use that would output each CustomerName and Sal

Comparisions and assignments in worst case, Q. Calculate that how many key ...

Q. Calculate that how many key comparisons and assignments an insertion sort makes in its worst case?        Ans: The worst case performance occurs in insertion

Row major storage, Q. Take an array A[20, 10] of your own. Suppose 4 words ...

Q. Take an array A[20, 10] of your own. Suppose 4 words per memory cell and the base address of array A is 100. Find the address of A[11, 5] supposed row major storage.

Determine the stereo vision, Determine the stereo vision There is still...

Determine the stereo vision There is still one more major item missing, before we can look at a computer display or plot and perceive it just as we see a real object, namely th

Registers, what are registers? why we need register? Definition? Types? Wha...

what are registers? why we need register? Definition? Types? What registers can do for us?

Implementation of queue, For a queue a physical analogy is a line at bookin...

For a queue a physical analogy is a line at booking counter. At booking counter, customers go to the rear (end) of the line & customers are attended to several services from the fr

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd