Transition graphs, Theory of Computation

Assignment Help:

We represented SLk automata as Myhill graphs, directed graphs in which the nodes were labeled with (k-1)-factors of alphabet symbols (along with a node labeled ‘?' and one labeled ‘?') and the edges were labeled with individual alphabet symbols. The k-factors of the automaton could be recovered by appending the symbol on an edge to the factor of the node it is incident from. The key value of the graphs is the way that they capture the set of all computations of the automaton in a concise form: every computation of the automaton corresponds to a path through the automaton from ‘?' to ‘?' and vice versa. The su?x substitution closure property is, in essence, a consequence of this fact. All that is signi?cant about the initial portion of a computation is the node it ends on. All strings that lead to the same node are equivalent in the sense that any continuation that extends one of them to form a string that is accepted will extend any of them to form a string that is accepted, and any continuation that leads one of them to be rejected will lead any of them to be rejected.

In adapting this idea for LTk automata, we have to confront the fact that the last k - 1 symbols of the input are no longer enough to characterize the initial portion of a string. We now will also need the record of all k-factors which occurred in that initial portion. To accommodate this, we will extend the labeling of our nodes to include sets of k-factors. The node set will be pairs in which the ?rst component is a k - 1 factor (the last k - 1 symbols of the input) and the second component is a set of k-factors. At the initial node, not having scanned any of the input yet, we have seen no k-factors, that is, the initial set of k-factors is empty (∅). The label of the initial node, then is (?, ∅).


Related Discussions:- Transition graphs

Prove the arden''s theorem, State and Prove the Arden's theorem for Regular...

State and Prove the Arden's theorem for Regular Expression

Powerset construction, As de?ned the powerset construction builds a DFA wit...

As de?ned the powerset construction builds a DFA with many states that can never be reached from Q′ 0 . Since they cannot be reached from Q′ 0 there is no path from Q′ 0 to a sta

Automaton theory, let G=(V,T,S,P) where V={a,b,A,B,S}, T={a,b},S the start ...

let G=(V,T,S,P) where V={a,b,A,B,S}, T={a,b},S the start symbol and P={S->Aba, A->BB, B->ab,AB->b} 1.show the derivation sentence for the string ababba 2. find a sentential form

Turing machine , Let ? ={0,1} design a Turing machine that accepts L={0^m ...

Let ? ={0,1} design a Turing machine that accepts L={0^m 1^m 2^m } show using Id that a string from the language is accepted & if not rejected .

Abstract model of computation, When we say "solved algorithmically" we are ...

When we say "solved algorithmically" we are not asking about a speci?c programming language, in fact one of the theorems in computability is that essentially all reasonable program

Non-regular languages, Suppose A = (Q,Σ, T, q 0 , F) is a DFA and that Q = ...

Suppose A = (Q,Σ, T, q 0 , F) is a DFA and that Q = {q 0 , q 1 , . . . , q n-1 } includes n states. Thinking of the automaton in terms of its transition graph, a string x is recogn

D c o, Prove xy+yz+ýz=xy+z

Prove xy+yz+ýz=xy+z

Deterministic finite automata, conversion from nfa to dfa 0 | 1 ____...

conversion from nfa to dfa 0 | 1 ___________________ p |{q,s}|{q} *q|{r} |{q,r} r |(s) |{p} *s|null |{p}

Class of local languages is not closed under union, Both L 1 and L 2 are ...

Both L 1 and L 2 are SL 2 . (You should verify this by thinking about what the automata look like.) We claim that L 1 ∪ L 2 ∈ SL 2 . To see this, suppose, by way of con

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd