Transition graphs, Theory of Computation

Assignment Help:

We represented SLk automata as Myhill graphs, directed graphs in which the nodes were labeled with (k-1)-factors of alphabet symbols (along with a node labeled ‘?' and one labeled ‘?') and the edges were labeled with individual alphabet symbols. The k-factors of the automaton could be recovered by appending the symbol on an edge to the factor of the node it is incident from. The key value of the graphs is the way that they capture the set of all computations of the automaton in a concise form: every computation of the automaton corresponds to a path through the automaton from ‘?' to ‘?' and vice versa. The su?x substitution closure property is, in essence, a consequence of this fact. All that is signi?cant about the initial portion of a computation is the node it ends on. All strings that lead to the same node are equivalent in the sense that any continuation that extends one of them to form a string that is accepted will extend any of them to form a string that is accepted, and any continuation that leads one of them to be rejected will lead any of them to be rejected.

In adapting this idea for LTk automata, we have to confront the fact that the last k - 1 symbols of the input are no longer enough to characterize the initial portion of a string. We now will also need the record of all k-factors which occurred in that initial portion. To accommodate this, we will extend the labeling of our nodes to include sets of k-factors. The node set will be pairs in which the ?rst component is a k - 1 factor (the last k - 1 symbols of the input) and the second component is a set of k-factors. At the initial node, not having scanned any of the input yet, we have seen no k-factors, that is, the initial set of k-factors is empty (∅). The label of the initial node, then is (?, ∅).


Related Discussions:- Transition graphs

Computations of sl automata, We will specify a computation of one of these ...

We will specify a computation of one of these automata by specifying the pair of the symbols that are in the window and the remainder of the string to the right of the window at ea

Decision Theroy, spam messages h= 98%, m= 90%, l= 80% non spam h=12%, m = 8...

spam messages h= 98%, m= 90%, l= 80% non spam h=12%, m = 8%, l= 5% The organization estimates that 75% of all messages it receives are spam messages. If the cost of not blocking a

REGULAR GRAMMAR, Find the Regular Grammar for the following Regular Express...

Find the Regular Grammar for the following Regular Expression: a(a+b)*(ab*+ba*)b.

Context free grammar, A context free grammar G = (N, Σ, P, S)  is in binary...

A context free grammar G = (N, Σ, P, S)  is in binary form if for all productions A we have |α| ≤ 2. In addition we say that G is in Chomsky Normaml Form (CNF) if it is in bi

Turing machine, Design a turing machine to compute x + y (x,y > 0) with x a...

Design a turing machine to compute x + y (x,y > 0) with x an y in unary, seperated by a # (descrition and genereal idea is needed ... no need for all TM moves)

Shell script, shell script to print table in given range

shell script to print table in given range

#dfa, Give DFA''s accepting the following languages over the alphabet {0,1}...

Give DFA''s accepting the following languages over the alphabet {0,1}: i. The set of all strings beginning with a 1 that, when interpreted as a binary integer, is a multiple of 5.

Abstract model for an algorithm solving a problem, These assumptions hold f...

These assumptions hold for addition, for instance. Every instance of addition has a unique solution. Each instance is a pair of numbers and the possible solutions include any third

Automata, how to prove he extended transition function is derived from part...

how to prove he extended transition function is derived from part 2 and 3

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd