Transformation for isometric projection - transformation, Computer Graphics

Assignment Help:

Transformation for Isometric projection - Transformation

Suppose that P(x,y,z) be any point in a space.  Assume as a given point P(x,y,z) is projected to the P'(x'y',z') on the projection plane as x + y + z = 0. We are involved to determine the projection point P'(x',y',z').

The parametric equation of a line passing via point P(x, y, z) and towards d (1, 1, 1) is:

P + t.d = (x, y, z) + t. (1,1,1) = (x + t, y + t, z + t) is any one point of on the line, here - ∞< t < ∞. The point P' can be acquired, whereas t = t*.

Hence P'=(x',y',z')=(x + t*,y + t*,z + t*), as P' lies on x + y + z = 0 plane.

ð   (x + t*)+(y + t*) + (z + t*)=0

ð  3.t*=-(x + y + z)

ð       t*=-(x + y + z)/3 must be true.

ð     x'= (2.x - y - z)/3 , y'=(-x +2.y - z)/3 , z'=(- x - y +2.z)/3

Hence, P'=(x',y',z')=[(2.x -y-z)/3, (-x +2.y- z)/3, (-x-y+2.z)/3]

In terms of homogeneous coordinates, we acquire:

1635_Transformation for Isometric projection - Transformation.png


Related Discussions:- Transformation for isometric projection - transformation

Terms, composite transformation

composite transformation

Principle vanishing point - perspective projections, Principle Vanishing po...

Principle Vanishing point - Perspective Projections Assume that line 1 and l2 be two straight lines parallel to each other that are also parallel to x-axis. If the projection

Multimedia resources, Education courses, skills, and knowledge are sometime...

Education courses, skills, and knowledge are sometimes taught of context because of lack of application of real time examples. To resolve this, educators are using multimedia to br

Raster and random scan displays - hardware primitive, Raster and random sca...

Raster and random scan displays In Raster scan displays, whole screen is refreshed a number of times in a second to keep the picture visible on the screen. This is called refre

Variation of intensity - modeling and rendering, Variation of Intensity - M...

Variation of Intensity - Modeling and Rendering According to the phong model the variation of Intensity (I) along with α (since I α cos n α) is: i) for shiny surface (

Normalization transformation, Find the normalization transformation N, whic...

Find the normalization transformation N, which uses the rectangle W(1, 1); X(5, 3); Y(4, 5) and Z(0, 3) as a window and the normalized deice screen as viewpoint.

Write a simple c-code to generate a circular arc, Write a simple C-code to ...

Write a simple C-code to generate a circular arc between two angle values. Use this to draw Figure.

BINARY, WHAT THAT S MEANS 0001

WHAT THAT S MEANS 0001

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd