Transformation for isometric projection - transformation, Computer Graphics

Assignment Help:

Transformation for Isometric projection - Transformation

Suppose that P(x,y,z) be any point in a space.  Assume as a given point P(x,y,z) is projected to the P'(x'y',z') on the projection plane as x + y + z = 0. We are involved to determine the projection point P'(x',y',z').

The parametric equation of a line passing via point P(x, y, z) and towards d (1, 1, 1) is:

P + t.d = (x, y, z) + t. (1,1,1) = (x + t, y + t, z + t) is any one point of on the line, here - ∞< t < ∞. The point P' can be acquired, whereas t = t*.

Hence P'=(x',y',z')=(x + t*,y + t*,z + t*), as P' lies on x + y + z = 0 plane.

ð   (x + t*)+(y + t*) + (z + t*)=0

ð  3.t*=-(x + y + z)

ð       t*=-(x + y + z)/3 must be true.

ð     x'= (2.x - y - z)/3 , y'=(-x +2.y - z)/3 , z'=(- x - y +2.z)/3

Hence, P'=(x',y',z')=[(2.x -y-z)/3, (-x +2.y- z)/3, (-x-y+2.z)/3]

In terms of homogeneous coordinates, we acquire:

1635_Transformation for Isometric projection - Transformation.png


Related Discussions:- Transformation for isometric projection - transformation

Line clipping algorithm - cohen sutherland algorithm, Line Clipping Algorit...

Line Clipping Algorithm - Cohen Sutherland Algorithm Line is a series of endless number of points; here no two points contain space in among them. Hence, the above said inequa

Midpoint circle generation algorithm, Midpoint circle generation algorithm ...

Midpoint circle generation algorithm This makes use of a circle function. Based on this circle function, a decision parameter is created which is used to decide successive pixe

General perspective transformation with cop at the origin, General Perspect...

General Perspective transformation with COP at the origin Here we suppose the given point P(x,y,z) be projected like P'(x',y',z') on the plane of projection. The center of pro

Algorithms for identification of observable objects, Algorithms for Identif...

Algorithms for Identification of Observable Objects There are various algorithms for identification of observable objects for various types of applications. Several methods ne

Mathematical description of oblique projection onto xy-plane, Mathematical ...

Mathematical description of an Oblique projection onto xy-plane  In order to expand the transformation for the oblique projection, identify the Figure. This figure explains a

Determine the transformation matrix for the reflection, Determine the trans...

Determine the transformation matrix for the reflection about the line y = x. Solution: The transformation for mirror reflection regarding to the line y = x, comprises the subs

Explanation of light source by a luminance, Explanation of light source by ...

Explanation of light source by a luminance Explanation of any light source by a luminance the factors identified as: Light source explained by a luminance 1)   All color as

Reflection and types of reflection, Reflection and Types of Reflection ...

Reflection and Types of Reflection Reflection and its types:   Reflection: this is the phenomenon of bouncing back of light; such phenomenon obeys laws of Reflec

Translation and shifting in spatial domain, Translation and shifting in Spa...

Translation and shifting in Spatial Domain A) The three images shown below were blurred using square masks of sizes n=23, 25, and 45, respectively. The vertical bars on the le

How many times will vertex appear in the intersection points, 1. For the po...

1. For the polygon shown in Figure on the next page, how many times will the vertex V 1 appear in the set of intersection points for the scan line passing through that point?  How

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd