Torsional equation , Mechanical Engineering

Assignment Help:

Torsional equation:

Derive the Torsional equation T/J = Π  /R = /L

Or

Derive an expression for the shear stress in shaft subjected to a torque.

Sol.: Assume,

T  = Maximum twisting torque or twisting moment

D = Diameter of shaft

R = Radius of shaft

J  = Polar moment of Inertia

τ= Maximum Permissible Shear stress (Fixed for given material)

G = Modulus of rigidity

θ= Angle of twist (Radians) = angle D'OD L  = Length of shaft.

?= Angle D'CD = Angle of Shear strain

 

2090_Torsional equation.png

Than Torsion equation is: T/J =   τ/R = G. θ /L

Let the shaft is subjected to a torque or twisting moment 'T'. And hence every C.S. of this shaft will be subjected to shear stress.

Now distortion at the outer surface = DD'

Shear strain at outer surface = Distortion/Unit length tan?         = DD'/CD

i.e. shear stress at the outer surface (tan? ) = DD'/or  = DD'/L           ...(i)

Now DD' = R.θ              or      ?= R .  θ /L    ...(ii)

Now G = Shar stress induced/shear strain produced

G =   τ/(R. θ /L);

or;                                             τ/R = G. θ /L                              ...(A);

This equation is called Stiffness equation.

Hear G,  θ , L are constant for a given torque 'T'. That is proportional to R

If τ r  be the intensity of shear stress at any layer at a distance 'r' from canter of the shaft, then;

1566_Torsional equation1.png

Now from equation (ii) T = ( τ/R)   J

or                                              τ/R = T/J;                                   ...(B)

This equation is called as strength equation

The combined equation A and B; we get

T/J =   τ/R = G.  τ/L

This equation is called as Torsion equation.

From the relation             T/J =   τ/R ; We have  T =   τ.J/R =  τ .ZP

For the given shaft I and R are constants and IP/R is thus constant and is called as POLAR MODULUS(ZP). of the shaft section.

Polar modulus of section is thus measure of strength of shaft in the torsion.

TORSIONAL RIGIDITY or Torsional Stiffness (K): = G.J/L = T


Related Discussions:- Torsional equation

Determine work done per second, A nozzle of 50 mm. dia. delivers a stream o...

A nozzle of 50 mm. dia. delivers a stream of water that strikes a flat plate which is held normal to the axis of stream. If the issuing jet has a velocity of 15 m/sec., determine:

Dynamics, a motorcycle is used to stunt show to go over a valley . if the i...

a motorcycle is used to stunt show to go over a valley . if the initial speed at A is u m/s, determine a. the minimum U so that the motorcycle reaches the bank at B. b. the veloc

Alternating current -fundamentals of electricity , Alternating Current ( A...

Alternating Current ( AC ) : The electricity whose direction changes at regular interval is known as alternating current. I

Dust collector, Dust Collector:             Dust collector system is to...

Dust Collector:             Dust collector system is to collect the blast burrs or waste particle created during the blasting process. During the blasting process, this dust co

A common cell control software, A Common Cell Control Software  In this...

A Common Cell Control Software  In this section, fine and common implemented cell control software are developed, that is based upon a transition table, to show the restriction

Explain the importance of jigs and fixtures, Explain the Importance of jigs...

Explain the Importance of jigs and fixtures: Enhance productivity. Rapid production work. Reduces manufacturing costs. Complex and heavy components can be

Basic troubleshooting of motorcycle, Basic Troubleshooting of Motorcycle we...

Basic Troubleshooting of Motorcycle we have studied about the basic troubles in motorcycle operation and their solutions. It will help you in finding out the problem with the vehic

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd