beard strategy, Game Theory, Game Theory

Assignment Help:
#questi1 A, Explain how a person can be free to choose but his or her choices are casually determined by past event

2 B , Draw the casual tree for newcomb''s problem when Eve can''t perfectly detect Adam''s casual history. The probabilities of Eve rightly or wrongly detecting whether adam will later open only the black box instead of opening both boxes are respectively denoted r and w. recal that L denotes the smaller amount of money always in the clear box and M denotes the larger amount of money that eve might might put in side the opaque box E A

C, Derive the two expected payoffs formulas E A (1B / r, w) and E A ( (2B /r,w) and use them to solve for another formula that equals the smallest value of M (denoted M*) required in order for Adam''s expected payoff from opening only the opaque box to exceed that from opening both boxes by a multiple of as least ( a sign that looks like derivative) L what is the resulting formula for M*. finally suppose (L, sign that looks like derivative I don''t know ) = (300, 95), (r,w)=(.58, .43) and use the formula for M* to calculate the numerical value of M* for this case

2. A, Suppose a CD player player tries to detect whether its partner is C player instead of a DD player by looking for external signals that are at least as typical for DD players than DD players than for cd players draw a diagram tp explain how two boundariesb.L and bu are optimally determined by the minimum likehood ration Lmin. Show on the diagram where it is optimal to respond C versus D. Also explain what happens to the boundries when detection becomes more cautious by raising the minimum likehood ration

b. What is meaning of the LDD detection strategy

c. What is the main problem with the green -beard strategy? Explain how the LDD strategy overcomes this problem

3. A. If CD players are able to use the LDD strategy better than pure chance then explain what happens to the signal reliability ration as a CD player detects more cautiously

b. Assume a population contains either CD ot DD players where each player is randomly matched with partner taken from the whole population. Also assume the fear and greed payoff differences are equal. What are the expected payoff formulas for CD players [ denoted E(DD/x CD ) ] depending on the fraction of CD players in the population, denoted x CD \

c. Use expected payoff formulas of part C to algebraically derive an inequality for the signal reliability ration r/w that determines when the CD players will outperform the DD players. Thenuse this inequality with Part A, to explain how CD players can always outperform DD players starting from any positive initial fraction of CD players x CD > 0.

4, A. Use the inequality derived for part C question 3; to obtain an inequality required x *CD = 1 to remain stable against DD invaders. Also draw the ROC diagram discussed in class for visually representing this stability inequality

B. Explain how a diagram similar to that shown in part A can be used to derive a prediction of what will happen to the CD players equilibrium probability of cooperating if the fear and greed pay off difference decrease relative to the cooperation payoff difference

C. Again explain how a diagram similar to that shown in Part A can be used to derive a prediction of what will happen to the CD player equilibrium probability of cooperating if they exchange email messages instead of talking talk face to faceon..

Related Discussions:- beard strategy, Game Theory

Proxy bidder , A proxy bidder represents the interests of a bidder not phys...

A proxy bidder represents the interests of a bidder not physically gift at the auction. Typically, the bidder can inform his proxy of the most quantity he's willing to pay, and als

Prisoner''s dilemma , A game frequently displayed in tv police dramas. 2 pa...

A game frequently displayed in tv police dramas. 2 partners in crime are separated into separate rooms at the police station and given an identical deal. If one implicates the oppo

Paradox of identification, Discussion in the preceding section suggests tha...

Discussion in the preceding section suggests that if we want to measure a given hnction belonging to a simultaneous-equations model, the hnction must be fairly stable over the samp

Simultaneous move games with mixed strategies, This chapter introduces mixe...

This chapter introduces mixed strategies and the methods used to solve for mixed strategy equilibria. Students are likely to accept the idea of randomization more readily if they t

Variable add, In a Variable add game, the add of all player's payoffs diffe...

In a Variable add game, the add of all player's payoffs differs counting on the methods they utilize. this can be the other of a continuing add game during which all outcomes invol

Totally mixed strategy, A mixed strategy during which the player assigns st...

A mixed strategy during which the player assigns strictly positive chance to each pure strategy.Morgenstern, Oskar,Coauthor of Theory of Games and Economic Behavior with John von N

Pareto economical , Named when Vilfredo Pareto, Pareto potency (or Pareto o...

Named when Vilfredo Pareto, Pareto potency (or Pareto optimality) may be alive of potency. An outcome of a game is Pareto economical if there's no different outcome that produces e

Schedule bid , A bid that indicates totally different costs for various qua...

A bid that indicates totally different costs for various quantitites of the item offered for sale. A series of price-quantity mixtures is tendered to the auctioneer.

Blind auction, Another term for a preserved bid auction in which bidders si...

Another term for a preserved bid auction in which bidders simultaneously submit bids to the auctioneer with no knowledge of the amount bid by other member. Usually, the uppermost b

Strategic kind, The strategic (or normal) kind may be a matrix illustration...

The strategic (or normal) kind may be a matrix illustration of a simultaneous game. for 2 players, one is that the "row" player, and also the different, the "column" player. every

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd