Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Three Particle System
Suppose we have two particles of masses m1 and m2 already fixed in space at distance r12 from each other. Let us bring in a third particle of mass m3, from ∞ to some point P near the first two particles, so that m3 finally is at distance r13 from m1 and at distance r23 from m2.
Now, at any instant, there are two forces acting on m3, viz. the gravitational force F31 due to m1 and F32 due to m2. The total work done in moving m3 to point P is given by, Note that the two forces act independently of each other along respective radial directions. That is, for example, we have Note that the two forces act independently of each other along respective radial directions. That is, for example, we have where r and dr in the above integral refer to distances along the radial direction joining particles 1 and 3, at time t. Similarly, we get For conservative forces, the work done is interpreted as the negative change in potential energy. Hence, the increase in gravitational potential energy of the system by joining of third particle is (-W3). The total potential energy of three-particle system becomes,U = U12 + ( -W3 ) Thus, the total potential energy of the system is the sum of potential energies of each pair of particles taken independently.Remember that ( -W3 ) is not the potential energy 'of mass m3'; it is the sum of potential energies of masses (m1 and m3)and masses (m2 and m3).If m3 = 1 (unit mass), we define the gravitational field at point P due to masses m1 and m2 as the net force acting on unit mass at P. where we are now writing r1 and r2 as the position vectors of point P relative to masses m1 and m2. [That is, in fact, r1 ≡ r31and r2 = r32].Gravitational potential at point P due to masses m1 and m2 gives the change in potential energy of the system when a unit mass is added to the system at point P. That is, potential ØP at P is the value of ( -W3 ) from m3 = 1 (unit mass). where r1 and r2 denote distances of P from m1 and m2.
describe about pendulum pump mechanism and diagram
a) Determine the value of σ 0 to cause failure when θ=30°, according to the maximum stress failure criterion. Consider both σ 0 > 0 and σ 0 e.g. "failure in longitudinal tens
i) Illustrate forward path and self loop. ii) Describe transfer function. iii) Which feedback is preferred and why. iv) Write the properties of signal flow graph. v) Il
Throttle Free Play Adjustmen: A smooth operation of the throttle ensures proper acceleration of the vehicle according to the requirement of the rider. If the throttle cable is kin
can you help me to do my project on machine design,it is specific project with calculation and some draw.
How long does it take a plane, traveling at a constant speed of 190 m/s, to fly once around a circle whose radius is 2950 m?
i have an assignment due tomorrow
(a) Calculate the natural frequency of mass m = 1 Kg placed at one end of a cantilever beam of negligible mass. Length of cantilever = 500 mm, d = 30 mm, b = 20 mm, E = 210x10 9 N
I am stumped as to how to figure this out. It is a motor with a cable pulley to move the carriage in a wave tank. (the part that pulls the boat, etc). I have to build it on paper
a circle of 40mm roll on horizontal line.draw the curve traced out by the point for 1 complete revolution.the point is vertically above centre of circle
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd