Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Three Particle System
Suppose we have two particles of masses m1 and m2 already fixed in space at distance r12 from each other. Let us bring in a third particle of mass m3, from ∞ to some point P near the first two particles, so that m3 finally is at distance r13 from m1 and at distance r23 from m2.
Now, at any instant, there are two forces acting on m3, viz. the gravitational force F31 due to m1 and F32 due to m2. The total work done in moving m3 to point P is given by, Note that the two forces act independently of each other along respective radial directions. That is, for example, we have Note that the two forces act independently of each other along respective radial directions. That is, for example, we have where r and dr in the above integral refer to distances along the radial direction joining particles 1 and 3, at time t. Similarly, we get For conservative forces, the work done is interpreted as the negative change in potential energy. Hence, the increase in gravitational potential energy of the system by joining of third particle is (-W3). The total potential energy of three-particle system becomes,U = U12 + ( -W3 ) Thus, the total potential energy of the system is the sum of potential energies of each pair of particles taken independently.Remember that ( -W3 ) is not the potential energy 'of mass m3'; it is the sum of potential energies of masses (m1 and m3)and masses (m2 and m3).If m3 = 1 (unit mass), we define the gravitational field at point P due to masses m1 and m2 as the net force acting on unit mass at P. where we are now writing r1 and r2 as the position vectors of point P relative to masses m1 and m2. [That is, in fact, r1 ≡ r31and r2 = r32].Gravitational potential at point P due to masses m1 and m2 gives the change in potential energy of the system when a unit mass is added to the system at point P. That is, potential ØP at P is the value of ( -W3 ) from m3 = 1 (unit mass). where r1 and r2 denote distances of P from m1 and m2.
Platforms: Platforms are places where trains stop and passengers entrain and detrain. For BG operations, the length of the platform should be about 30 m. Figure gives the
how many types of kinematics
Time and Cost Analysis This discusses about certain basic activities that must be carried out in a factory to convert raw materials into finished products. These activities br
Ask question #Minimum 1. Research the topic of heat loss in a cylindrical pipe. Explain which laws of physics are used to discuss heat loss in a pipe, and briefly explain how the f
Resistance welding electrodes and holders Requisites For Electrodes : The resistance welding electrodes are meant for the following functions: Conducting electricity
Prove that the ratio of belt tension is given by the T 1 / T 2 = e μθ Let T1 = Tension in belt on the tight side T2 = Tension in belt on the slack side θ = Angle
Give justification toward the development of rapid prototyping?
An inside cylinder locomotive has its cylinder centre lines 0.70m apart and has a stroke of 0.60m. Rotating mass per cylinder = 150kg Distance between wheel Centre lines = 1.
Hoor chaudary
High Speed Circuit : The speed of motorcycle is further increased by raising the throttle valve. In this condition, fuel and air enter through main passage and main jet as can be
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd