Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Three Particle System
Suppose we have two particles of masses m1 and m2 already fixed in space at distance r12 from each other. Let us bring in a third particle of mass m3, from ∞ to some point P near the first two particles, so that m3 finally is at distance r13 from m1 and at distance r23 from m2.
Now, at any instant, there are two forces acting on m3, viz. the gravitational force F31 due to m1 and F32 due to m2. The total work done in moving m3 to point P is given by, Note that the two forces act independently of each other along respective radial directions. That is, for example, we have Note that the two forces act independently of each other along respective radial directions. That is, for example, we have where r and dr in the above integral refer to distances along the radial direction joining particles 1 and 3, at time t. Similarly, we get For conservative forces, the work done is interpreted as the negative change in potential energy. Hence, the increase in gravitational potential energy of the system by joining of third particle is (-W3). The total potential energy of three-particle system becomes,U = U12 + ( -W3 ) Thus, the total potential energy of the system is the sum of potential energies of each pair of particles taken independently.Remember that ( -W3 ) is not the potential energy 'of mass m3'; it is the sum of potential energies of masses (m1 and m3)and masses (m2 and m3).If m3 = 1 (unit mass), we define the gravitational field at point P due to masses m1 and m2 as the net force acting on unit mass at P. where we are now writing r1 and r2 as the position vectors of point P relative to masses m1 and m2. [That is, in fact, r1 ≡ r31and r2 = r32].Gravitational potential at point P due to masses m1 and m2 gives the change in potential energy of the system when a unit mass is added to the system at point P. That is, potential ØP at P is the value of ( -W3 ) from m3 = 1 (unit mass). where r1 and r2 denote distances of P from m1 and m2.
If High Resistance or Low Current in Primary Coil Circuit Causes of Problem Remedy Disconnected or loose wires
what are the finishing operation of telephone outer body after injection molding
Derive the formula for maximum instanteneous stress due to impact loading
calculate the head required
Different types of information units of CAD There are different types of information units defined. They are : Class 0 The geometric primitives needed for describing 2- a
Example of Shear force and bending moment diagram: Q: Draw the Shear Force and bending moment diagram for the simply supported beam loaded as shown in the figure given belo
A 1.5m long column has circular cross-section of 5cm diameter. One of the end of the column is fixed in the position and direction and other end is free. Taking factor of safety as
Q. What is Epoxy Powder? The coating manufacturer shall be consulted as to the product best suited to the Applicator's speed of coating, pipe diameter and wall thickness, and t
Calculate Size of Blank Required for Drawing A flanged cup shown in Figure is to be produced by deep drawing. Calculate the size of the blank required for drawing.
For the collapse loads indicated in Figure Q3, find the required plastic moment of resistance (M p ). The frame members have varying plastic moments of resistance as indi
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd