Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Three Particle System
Suppose we have two particles of masses m1 and m2 already fixed in space at distance r12 from each other. Let us bring in a third particle of mass m3, from ∞ to some point P near the first two particles, so that m3 finally is at distance r13 from m1 and at distance r23 from m2.
Now, at any instant, there are two forces acting on m3, viz. the gravitational force F31 due to m1 and F32 due to m2. The total work done in moving m3 to point P is given by, Note that the two forces act independently of each other along respective radial directions. That is, for example, we have Note that the two forces act independently of each other along respective radial directions. That is, for example, we have where r and dr in the above integral refer to distances along the radial direction joining particles 1 and 3, at time t. Similarly, we get For conservative forces, the work done is interpreted as the negative change in potential energy. Hence, the increase in gravitational potential energy of the system by joining of third particle is (-W3). The total potential energy of three-particle system becomes,U = U12 + ( -W3 ) Thus, the total potential energy of the system is the sum of potential energies of each pair of particles taken independently.Remember that ( -W3 ) is not the potential energy 'of mass m3'; it is the sum of potential energies of masses (m1 and m3)and masses (m2 and m3).If m3 = 1 (unit mass), we define the gravitational field at point P due to masses m1 and m2 as the net force acting on unit mass at P. where we are now writing r1 and r2 as the position vectors of point P relative to masses m1 and m2. [That is, in fact, r1 ≡ r31and r2 = r32].Gravitational potential at point P due to masses m1 and m2 gives the change in potential energy of the system when a unit mass is added to the system at point P. That is, potential ØP at P is the value of ( -W3 ) from m3 = 1 (unit mass). where r1 and r2 denote distances of P from m1 and m2.
Given: A brittle material has an ultimate tensile strength of 300 MPa and an ultimate compressive strength of -1000MPa. Assume that failure can be represented by the Modified
have assignment in FEM calculation and ANSYS are you able to solve this kind of assignment
Compute the angular velocity of bar: A bar AB as shown in slides so that its bottom point A has a velocity of 4 m/sec to the left along the horizontal plane. Compute the veloc
Prove the torsion equation T/J=τ/R=C. θ/L for the solid circular shaft. State the various assumptions used on above said equation.
A single jet pelton wheel runs at 300 rpm under a head of 510 m. the jet diameter is 200m, its deflection inside the bucket is 165 o and its relative velocity is reduced by 15% be
A chemical works produces an aqueous effluent at above ambient temperature. The Environmental Agency insists that before the effluent is discharged to the river, it must be cooled.
WELDING ARC PHYSICS Electric arc as an intense source of heat is employed in welding of materials. In the field of welding techniques, arc welding processes constitute a major po
a) Draw a diagram of a simple carburettor and briefly explain its function. b) What are the basic characteristics of fuels for CI engines.
Q. Why we need paving in design of a plant? Concrete paving should be provided under any equipment where flammable or hazardous liquids may be spilled during routine operation
explain the properties of acouple
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd