Three particle system, Mechanical Engineering

Assignment Help:

Three Particle System

Suppose we have two particles of masses m1 and m2 already fixed in space at distance r12 from each other. Let us bring in a third particle of mass m3, from ∞ to some point P near the first two particles, so that m3 finally is at distance r13 from m1 and at distance r23 from m2.


Now, at any instant, there are two forces acting on m3, viz. the gravitational force F31 due to m1 and F32 due to m2. The total work done in moving m3 to point P is given by,

742_download.png 

Note that the two forces act independently of each other along respective radial directions. That is, for example, we have
938_download (1).png 

Note that the two forces act independently of each other along respective radial directions. That is, for example, we have
595_download (2).png 

where and dr in the above integral refer to distances along the radial direction joining particles 1 and 3, at time t. Similarly, we get

2129_download (3).png 

For conservative forces, the work done is interpreted as the negative change in potential energy. Hence, the increase in gravitational potential energy of the system by joining of third particle is (-W3). The total potential energy of three-particle system becomes,

U = U12 + ( -W3 )

156_download (5).png 

Thus, the total potential energy of the system is the sum of potential energies of each pair of particles taken independently.

Remember that ( -W3 ) is not the potential energy 'of mass m3'; it is the sum of potential energies of masses (m1 and m3)and masses (m2 and m3).

If m3 = 1 (unit mass), we define the gravitational field at point P due to masses m1 and m2 as the net force acting on unit mass at P.

2150_download (6).png 

where we are now writing r1 and r2 as the position vectors of point P relative to masses m1 and m2. [That is, in fact, r1 ≡ r31and r2 = r32].

Gravitational potential at point P due to masses m1 and m2 gives the change in potential energy of the system when a unit mass is added to the system at point P. That is, potential ØP at P is the value of ( -W3 ) from m3 = 1 (unit mass).

1146_download (7).png 

where r1 and r2 denote distances of P from m1 and m2.


Related Discussions:- Three particle system

Engineering mechanics, Define the term Engineering Mechanics Sol.: E...

Define the term Engineering Mechanics Sol.: Engineering mechanics is the branch of science, which deals the action of forces on the rigid bodies. Everywhere we feel applicat

Effect of the parameters-spot welding, Effect of the parameters in spot wel...

Effect of the parameters in spot welding The passage of more current than what is required causes the following defects. I. Weld expulsion ii. Cavitations iii. Weld cracking

Yes, Which type of study require for mechanial engineering

Which type of study require for mechanial engineering

Thermodynamics, why constant volume line has more slop tha constant pressur...

why constant volume line has more slop tha constant pressure line in T-S diagram

Deflection at the centre - maximum deflection, Deflection at the centre - m...

Deflection at the centre - maximum deflection: A simply supported beam of span 6 m is subjected to Udl of 24 kN/m for a length of 2 m from left support. Discover the deflectio

Evaluate the velocity ratio, (a) A geometrically similar model of spillway ...

(a) A geometrically similar model of spillway is to be laid to a scale of 1 in 50. Evaluate the velocity ratio, discharge ratio and acceleration ratio. (b) If model prototype ra

Determine thermal contact resistance, Derive the mathematical Heat Conducti...

Derive the mathematical Heat Conduction equation through a composite wall. Determine Thermal contact Resistance ?

Best air pressure, Research on Best air pressure :             Once we ...

Research on Best air pressure :             Once we had green light to go on with sand blasting process. We had conducted a few experiment testing and analysis. First of all we

Derive mathematical equation for bernoulls equation, Derive mathmatical equ...

Derive mathmatical equation for Bernoull's equation, what are the application of Bernoull's equation and illustrate any one.

Constant pressure cycle, Diesel (Constant Pressure Cycle): 5-1...

Diesel (Constant Pressure Cycle): 5-1 Suction Stroke at constant pressure 1-2 Adiabatic Compression 2-3 Heat Addition at constant pressure 3-4 Adiabatic Expan

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd