Thinking mathematically-why learn mathematics, Mathematics

Assignment Help:

THINKING MATHEMATICALLY :  Have you ever thought of what mental processes you are going through when you are solving a mathematical problem? Why don't you try the following problem?

While doing it, carefully monitor the mathematical processes you are undergoing. The problem is to find out what the relationship is between the arithmetic mean (AM) and the geometric mean (GM) of any two positive numbers.

How would you tackle this? Would you start by looking at a few specific pairs of numbers? If so, you are specialising.

Now, suppose you take, say 1 and 3. The AM of 1 and 3 is(1+3)/2 The GM of 1 and 3 is √1×3 = √3. By taking several pairs, suppose you get the following chart: √3

373_number pair.png

Do you start noticing a pattern? Does this make you conjecture a rule? What is the general rule? Is it that AM ≥GM? You need to check if your generalisation is right. This means that you need to prove your conjecture. This means that you need to start from certain assumptions, and arrive at your result by a series of steps, each following logically from the previous one.

There are several ways of proving it. One way is that you can take any two positive numbers x and y. Now, you want to see whether

X+y/2≥√xy

This wills he true if and only if

Learning algorithms is not learning mathematics.

For positive numbers m and n, their AM is

 (x + y) ≥ 2 √xy , which is true if and only if

(x + y)2 ≥ 4xy , which is true if and only if

x2 + y2 + 2xy ≥ 4xy , which is true if and only if

x2 + y2 - 2xy ≥ 0 , which is true if and Only if

(x - y)2 ≥ 0 , and this is always true, since the square of a number is always non-negative.

So, you have proved the general rule that the AM of any two positive numbers is greater than or equal to their GM.

But, may be your curiosity has been provoked. Are you wondering if a similar statement is true for 3 positive numbers? Or for negative numbers? In this case, you are posing a problem. Of course, once you pose it, I'm sure you'll test your conjecture, and prove or disprove it. And, carrying on in this manner, you may generalise your statement to n numbers, and prove it.

Remember that, without a proof your conjecture is not acceptable as a true mathematical statement.

Sometimes, of course, you may make a conjecture which is not right. For example, suppose that you had initially found the values of the AM and GM for the pairs (1,1), (2,2), (3,3), and so on. Then you could have conjectured that AM = GM. But then, to test this, you may have tried it out for (1,3), and discovered that your conjecture isn't correct. So, you would need to modify it, and then develop your mathematical argument again.

So, what have you been doing in the process of problem-posing and problem solving?

Weren't you thinking mathematically along the following lines?

E1) Several circles can be drawn through a point. How many can be drawn through two points, or three points,...?

a) Work on this problem and note down the processes you use.

b) Did the properties of mathematics, show up while you were developing your arguments? If so, in what way?

If you've done, you must have realised that trying mathematical problems improves one's abilities to

  • think precisely
  • articulate clearly
  • think logically and systematically
  • look for patterns and relationships

These abilities, if well developed, can help us greatly in other real-life situations. Therefore, these mental abilities should be developed right from childhood on.


Related Discussions:- Thinking mathematically-why learn mathematics

Solving whole number riddles, What is the answer for I am greater than 30 a...

What is the answer for I am greater than 30 and less than 40. The sum of my digits is less than 5.

Exponential and logarithm equations, Exponential and Logarithm Equations ...

Exponential and Logarithm Equations : In this section we'll learn solving equations along with exponential functions or logarithms in them. We'll begin with equations which invol

Example of elps maths learning, Do you agree with the necessity of the sequ...

Do you agree with the necessity of the sequencing E - L - P - S for learning? If not, then what do you suggest as an alternative path for understanding and internalising mathematic

Monomial, express the area of a square with sides of length 5ab as monomial...

express the area of a square with sides of length 5ab as monomial

How many different combinations could she form these item, Wendy has 5 pair...

Wendy has 5 pairs of pants and 8 shirts. How many different combinations could she form with these items? Multiply the number of choices for each item to find out the number of

Example of linear in - equation - linear algebra, Explain some Examples of ...

Explain some Examples of linear in - Equation, with solution.

What was joe's approximate raw act score, Using the same mean and standard ...

Using the same mean and standard deviation from problem 10 (mean m = 20.1 and a standard deviation s = 5.8). Joe was informed that he scored at the 68 th percentile on the ACT, wh

Determinants, can anyone solve this assigment: D=lsqrt(3x-5) sqrt(2x)l ...

can anyone solve this assigment: D=lsqrt(3x-5) sqrt(2x)l =3 l -1 1 l

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd