Thermodynamics, turbine engine, Mechanical Engineering

Assignment Help:
The attached figure depicts an indirectly fired gas turbine engine. In the gas turbine engine, air is
compressed to a high pressure and then heat is added. The high pressure, high temperature air is then
expanded through a turbine with power being extracted. To a first approximation, the compressor and
turbine may be treated as adiabatic. In a typical gas turbine, the fuel is added to the air and combusted
and it is actually the combustion products that pass through the turbine. In the indirectly fired turbine,
as is used in this problem, the air is heated with a heat exchanger which allows heat sources that could
otherwise not be used (e.g. solar, coal, etc.). The net work out of the gas turbine engine is the work out
of the turbine less the work into the compressor. In a real engine these devices are normally all coupled
on a common shaft.
Since the work of compression decreases the net work out, anything you can do to decrease the
compression work will increase the net work out. One way to do that is to cool the air being
compressed. The attached diagram shows a proposed system where the compression is divided into
two stages and liquid water is sprayed into the air to cool it between the two stages. It is proposed that
this approach will increase power output and increase efficiency. Your task is to determine if this
approach is thermodynamically feasible. You may neglect the pressure drops between components and
within the heat exchanger and you may neglect kinetic energy. The following design parameters are
provided. For these design parameters, determine the effect of the water spray on efficiency (net work
out divided by heat input) and net power out per kg/s of dry air coming into the turbine. Do this for a
range of water spray inputs from 0 up to the amount required to achieve 70% relative humidity at point
3.
Point 1
T= _20C______
P= _0.85 bar______
Ø = __50%_____
Point 2
P= __3.5 bar_____
Point 3
P= ___10.0 bar_____
Point 4
T=__1220K_______
Point 5
P= P1
Compressor A: ?isen = __0.87___ Compressor B: ?isen = _0.83____ Compressor C: ?isen = __0.93

Related Discussions:- Thermodynamics, turbine engine

Use of high temperature material in superheaters, Q. Use of High temperatur...

Q. Use of High temperature material in Superheaters? Typically superheaters and reheaters provide service lives of approximately 15 years (i.e. half the expected service life o

Inspection and testing of vessels, Q. Inspection and testing of vessels? ...

Q. Inspection and testing of vessels? The Vendor shall be responsible for all inspection and testing. WorleyParsons reserves the right to inspect vessels or parts of vessels at

Calculation for stress-strain carves, Calculation for Stress-strain carves:...

Calculation for Stress-strain carves:   After reaching point D, if bar is strained further, a local reduction in cross section occurs in gauge length (that is, formati

Determine the point of contraflexure - overhanging beam, Determine the poin...

Determine the point of contraflexure: Draw the shear force & bending moment diagram for 10 m span overhanging beam along overhanging part of 4 m subjected to a system of loads

Applications, applications of dynamically induced emf

applications of dynamically induced emf

Change in gravitational force, prove that the weight of a body at an elevat...

prove that the weight of a body at an elevation of h from sea level is expressd by the equation

Overview of project phases, Q. Overview of Project Phases? Conceptual ...

Q. Overview of Project Phases? Conceptual Engineering Phase The purpose of this phase of work is to develop the Client's proposal to a level of detail adequate to determin

Rcc pipe culverts, RCC Pipe Culverts: Reinforced cement concrete pipe...

RCC Pipe Culverts: Reinforced cement concrete pipe culverts are ideal for dealing with small discharges. The advantages are : (a) They are very economical, since a circula

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd