Theory of indices, Mathematics

Assignment Help:

In algebra knowing that 23 = 8 is not sufficient. Equally important to know is what would be the result if quantities like 23 . 2-4 . 26 or  37 / 32  are simplified. Mind you, finding the value of quantities like these in most of the problems is not an end in itself. The values of these quantities form an input for solving the problem further. Hence, simplifying these quantities help us to solve more advanced problems. Also that, one feels monotonous if he tries to simplify quantities like these by stating at each step what they literally mean. In this part we learn about the laws of indices and understand the logic behind these concepts.

Law 1

am  x an = am+n, when m and n are positive integers.

By the above definition, am  = a x a ...... to m factors and

                                      an  = a x a .... to n factors.

am x an        = (a x a...to m factors) (a x a...to n factors)

                   =  a x a .................... to m + n  factors

                   =  am+n

Now we extend this logic to negative integers and fractions. First let us consider this for negative integer, that is, m will be replaced by - n. By the definition of
am x an = am+n, we get

                            a-n x an = a-n+n = a0

But we know that a0 = 1

 

Hence, a-n = 1/ an or an = 1/ a-n  .

Similarly, what would be the case if m = p/q and n = p/q. By definition, we have

                            ap/q x ap/q = ap/q +  p/q   = a2p/q

This can be written as  2082_theory of indices.png  This is similar to taking the qth root of a2p. Now what would be the result if we proceed to multiply ap/q, q number of times. That is,

ap/q x ap/q x ap/q  x ap/q ...........  to q factors will be equal to aqp/q

We express this as  (ap/q)q= ap, that is taking the qth root of ap.

Apart from these we look at the meaning of a0. In this case the value of m = 0. Therefore, by definition

                            a0 x an = a0+n   = an

This can be also expressed as   a0 = an /an  = 1.

Now we take a numerical and check the validity of this law.

         26 x  27        =     (2 x 2 ....  to 6 factors)

                                   (2 x 2 ...... to 7 factors)

or,     26+7             =     2 x 2 ....... to (6 + 7) factors

                            =     213           = 8192

or else,

         26 x 27         =     (2 x 2 x 2 x 2 x 2 x 2) x

                                    (2 x 2 x 2 x 2 x 2 x 2 x 2)

                            =     (64)(128)

                            =     8192

(Note: The same logic can be extended to more than two factors also.)

Law 2

am/an = am-n, when m and n are positive integers and m > n.

By definition,    am   = a x a ....... to m factors  and

                      an   = a x a ....... to n factors

Therefore, am / an = 2227_law.png

      = a x a ....... to m - n factors
      = am-n

Now we take a numerical and check the validity of this law.

27

/

24    = 1927_law1.png

      = 2 x 2 x 2......to (7 - 4) factors
      = 2 x 2 x 2......to 3 factors
      = 23    = 8

or else,

27 / 24 = 2174_law2.png

          = 2 x 2 x 2 = 21+1+1  = 23
          = 8

Law 3

(am)n = amn, when m and n are positive integers.

By definition, (am)n   = am x am x am .... to n factors.
    (a x a ... to m factors) ....... to n times
  = a x a ..... to mn factors
  = amn

Now let us look whether this is true for positive fractions. We will keep m as it is and replace n by p/q, where p and q are positive integers. Then we will have

                            (am)n = (am)p/q

Now the qth power of (am)p/q  = {(am)p/q}q

 

= 877_law3.png
= (am)p
= amp

If we take the qth root of the above, we obtain

 

(am)p/q = 888_law4.png

For n being any negative quantity: In this case also m remains the same and n be replaced by - r, where r is positive. Then we have

(am)n

= (am)-r = 2414_law5.png

=

444_law6.png = a-mr

Again replacing -r by n, we obtain amn.

Now with the help of a numerical example let us verify this law.

(24)3 = 24 x 24 x 24
  = 24+4+4
  = 212  =  4096
or else,    
(24)3   = (24) (24) (24 )
  = (2 x 2 x 2 x 2) (2 x 2 x 2 x 2)
    (2 x 2 x 2 x 2)
  = (16) (16) (16)
  = 4096

Related Discussions:- Theory of indices

Operation research, can u suggest me topics for phd in or for any industrie...

can u suggest me topics for phd in or for any industries

How much greater is 0.0543 than 0.002, How much greater is 0.0543 than 0.00...

How much greater is 0.0543 than 0.002? To ?nd out how much greater a number is, you required to subtract; 0.0543 - 0.002 = 0.0523. For subtract decimals and line the numbers up

Pair of linear equations in two variables, a lending library has a fixed ch...

a lending library has a fixed charge for the first three days and an additional charge for each day thereafter. sam paid Rs 27 for a bookkept for 7 days while jaan paid Rs 21 for t

Calculate and plot the cdf of p-values, A discrete-valued random variable X...

A discrete-valued random variable X takes values in 0, 1, 2, . . . , where p(X = i) = π i. (a) Write down formulas for: the p-value at X = i the probability distributi

Rejection and acceptance regions, Rejection and Acceptance regions All ...

Rejection and Acceptance regions All possible values which a test statistic may either suppose consistency along with the null hypothesis as acceptance region or lead to the re

Modeling with first order differential equations, We here move to one of th...

We here move to one of the major applications of differential equations both into this class and in general. Modeling is the process of writing a differential equation to explain a

Proof of alternating series test, Proof of Alternating Series Test With...

Proof of Alternating Series Test With no loss of generality we can assume that the series begins at n =1. If not we could change the proof below to meet the new starting place

How do you find the second minimum spanning tree of a graph, How do you fin...

How do you find the second minimum spanning tree of a graph?  Find the second minimum spanning tree of the following graph.  Ans: The second minimum spanning tree is acq

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd