Theory of computation, Theory of Computation

Assignment Help:

Computations are deliberate for processing information. Computability theory was discovered in the 1930s, and extended in the 1950s and 1960s. Its basic ideas have become part of the foundation that any computer scientist is expected to know. The study of computation intended for providing an insight into the characteristics of computations. Such an insight may be used for predicting the difficulty of desired computations, for selecting the approaches they should take, and for developing tools that facilitate their design. Study of computation also provides tools for identifying problems that can possibly be solved, as well as tools for designing such solutions that is the field of computer sciences deals with the development of methodologies for designing programs and with the development of computers for the implementation of programs.

The study of computability also develops precise and well-defined language for communicating perceptive thoughts about computations. It reveals that there are problems that cannot be solved. And of the problems that can be solved, there are some that require infeasible amount of resources (e.g., millions of years of computation time). These revelations might seem discouraging, but they have the benefit of warning against trying to solve such problems. The study of computation provides approaches for identifying such problems are also provided by the study of computation.

Computation should be studied through medium of programs because programs are descriptions of computations. The clear understanding of computation and programs requires clear discussion of the following concepts

• "Alphabets, Strings, and Representation
• Formal languages and grammar
• Programs
• Problems
• Reducibility among problems"


Related Discussions:- Theory of computation

Computation of a dfa or nfa, Computation of a DFA or NFA without ε-transiti...

Computation of a DFA or NFA without ε-transitions An ID (q 1 ,w 1 ) computes (qn,wn) in A = (Q,Σ, T, q 0 , F) (in zero or more steps) if there is a sequence of IDs (q 1

D c o, Prove xy+yz+ýz=xy+z

Prove xy+yz+ýz=xy+z

Suffix substitution , Exercise Show, using Suffix Substitution Closure, tha...

Exercise Show, using Suffix Substitution Closure, that L 3 . L 3 ∈ SL 2 . Explain how it can be the case that L 3 . L 3 ∈ SL 2 , while L 3 . L 3 ⊆ L + 3 and L + 3 ∈ SL

Finite automata, design an automata for strings having exactly four 1''s

design an automata for strings having exactly four 1''s

Kleene closure, So we have that every language that can be constructed from...

So we have that every language that can be constructed from SL languages using Boolean operations and concatenation (that is, every language in LTO) is recognizable but there are r

Notes, write short notes on decidable and solvable problem

write short notes on decidable and solvable problem

Non - sl languages, The key thing about the Suffx Substitution Closure prop...

The key thing about the Suffx Substitution Closure property is that it does not make any explicit reference to the automaton that recognizes the language. While the argument tha

#dfa, Give DFA''s accepting the following languages over the alphabet {0,1}...

Give DFA''s accepting the following languages over the alphabet {0,1}: i. The set of all strings beginning with a 1 that, when interpreted as a binary integer, is a multiple of 5.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd