Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Theorem
Consider the subsequent IVP.
y′ = p (t ) y = g (t )
y (t0)= y0
If p(t) and g(t) are continuous functions upon an open interval a < t < b and the interval includes to, after that there is a unique solution to the IVP on such interval.
Therefore, just what does this theorem tell us? Initially, it tells us that for nice adequate linear first order differential equations solutions are guaranteed to exist and more significantly the solution will be particular. We may not be capable to get the solution, but do identify that it exists and which there will only be one of them. It is the very significant aspect of this theorem. Identifying that a differential equation has a unique solution is probably more significant than actually having the solution itself!
Subsequently, if the interval in the theorem is the largest possible interval on that p(t) and g(t) are continuous so the interval is the interval of validity for the solution. This means that for linear first order differential equations, we won't want to actually solve the differential equation in order to get the interval of validity. See that the interval of validity will based only partially on the initial condition. The interval should hold to, but the value of yo, has no consequence on the interval of validity.
how to solve addition
help to solve the laws of indicies chapter 9c book 3 high school example19to the power3_2 what is answer
In her last gymnastics competition Keri scored a 5.6 on the floor exercise, 5.85 on the vault, and 5.90 on the balance beam. What was Keri's total score? Keri's three scores re
the 10 miles assigned to the chess club start at the 10 mile point and go to the 20 mile point when the chess club members have cleaned 5/8 of their 10 mile section between which m
A lobster catcher spends $12 500 per month to maintain a lobster boat. He plans to catch an average of 20 days per month during lobster season. For each day, he must allow approx
in a given figure a,b,c and d are points on a circle such that ABC =40 and DAB= 60 find the measure of DBA
Find the sum of all natural no. between 101 & 304 which are divisible by 3 or 5. Find their sum. Ans: No let 101 and 304, which are divisible by 3. 102, 105..........
ne nje tabak letre me permasa 100cm dhe 55cm nje nxenes duhet te ndertoje nje kuboide me permasa 20cm,25cm,40cm. a mund ta realizoje kete, ne qofte se per prerjet dhe ngjitjet humb
Solve the form x 2 + bx - c ? This tutorial will help you factor quadratics that look something like this: x 2 + 11x - 12 (No lead coefficient; positive middle coeffic
Determine if the subsequent series is convergent or divergent. Solution As the cosine term in the denominator doesn't get too large we can suppose that the series term
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd