Theorem on intervals of validity, Mathematics

Assignment Help:

Theorem

Consider the subsequent IVP.

y′ =  p (t ) y = g (t )

 y (t0)= y0

If p(t) and g(t) are continuous functions upon an open interval a < t  < b and the interval includes to, after that there is a unique solution to the IVP on such interval.

 Therefore, just what does this theorem tell us? Initially, it tells us that for nice adequate linear first order differential equations solutions are guaranteed to exist and more significantly the solution will be particular. We may not be capable to get the solution, but do identify that it exists and which there will only be one of them. It is the very significant aspect of this theorem. Identifying that a differential equation has a unique solution is probably more significant than actually having the solution itself!

Subsequently, if the interval in the theorem is the largest possible interval on that p(t) and g(t) are continuous so the interval is the interval of validity for the solution. This means that for linear first order differential equations, we won't want to actually solve the differential equation in order to get the interval of validity. See that the interval of validity will based only partially on the initial condition. The interval should hold to, but the value of yo, has no consequence on the interval of validity.


Related Discussions:- Theorem on intervals of validity

Polynomials in two variables, Polynomials in two variables Let's take a...

Polynomials in two variables Let's take a look at polynomials in two variables.  Polynomials in two variables are algebraic expressions containing terms in the form ax n y m

Standard trig equation, "Standard" trig equation: Now we need to move into...

"Standard" trig equation: Now we need to move into a distinct type of trig equation. All of the trig equations solved to this point were, in some way, more or less the "standard"

Decision trees and bayes theory, Decision Trees And Bayes Theory This m...

Decision Trees And Bayes Theory This makes an application of Bayes' Theorem to resolve typical decision problems. It is examined a lot so it is significant to clearly understan

Home work, can you hepl me with my home i dont understand it!!!

can you hepl me with my home i dont understand it!!!

Parabola, If the point (a,2a) is an interior point of the region bounded by...

If the point (a,2a) is an interior point of the region bounded by the parabola y2=16x and the double ordinate through the focus then a belongs to

Find k to three decimal places, The population of a city is observed as gro...

The population of a city is observed as growing exponentially according to the function P(t) = P0 e kt , where the population doubled in the first 50 years. (a) Find k to three

#mathematics induction, how many numbers must be selected from the set A={1...

how many numbers must be selected from the set A={1, 3, 5, 7, 9, 11, 13, 15}to guarantee that at least one pair of these numbers add up to16? Explain and justify your answer

Math on a spot, compare: 643,251: 633,512: 633,893. The answer is 633,512.

compare: 643,251: 633,512: 633,893. The answer is 633,512.

Prove that prims algorithm produces a minimum spanning tree, Prove that Pri...

Prove that Prim's algorithm produces a minimum spanning tree of a connected weighted graph. Ans: Suppose G be a connected, weighted graph. At each iteration of Prim's algorithm

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd