Theorem on intervals of validity, Mathematics

Assignment Help:

Theorem

Consider the subsequent IVP.

y′ =  p (t ) y = g (t )

 y (t0)= y0

If p(t) and g(t) are continuous functions upon an open interval a < t  < b and the interval includes to, after that there is a unique solution to the IVP on such interval.

 Therefore, just what does this theorem tell us? Initially, it tells us that for nice adequate linear first order differential equations solutions are guaranteed to exist and more significantly the solution will be particular. We may not be capable to get the solution, but do identify that it exists and which there will only be one of them. It is the very significant aspect of this theorem. Identifying that a differential equation has a unique solution is probably more significant than actually having the solution itself!

Subsequently, if the interval in the theorem is the largest possible interval on that p(t) and g(t) are continuous so the interval is the interval of validity for the solution. This means that for linear first order differential equations, we won't want to actually solve the differential equation in order to get the interval of validity. See that the interval of validity will based only partially on the initial condition. The interval should hold to, but the value of yo, has no consequence on the interval of validity.


Related Discussions:- Theorem on intervals of validity

Algebra, how do i sole linear epuation

how do i sole linear epuation

Determines the possibility, There is a committee to be selected comprising ...

There is a committee to be selected comprising of 5 people from a group of 5 men and 6 women. Whether the selection is randomly done then determines the possibility of having the g

Decision trees and sub sequential decisions, Decision Trees And Sub Sequent...

Decision Trees And Sub Sequential Decisions A decision tree is a graphic diagram of different decision alternatives and the sequence of events like if they were branches of a t

Draw a common graph ( x - 2)2 /9+4(y + 2)2 =1, Graph     ( x - 2) 2 /9+4...

Graph     ( x - 2) 2 /9+4(y + 2) 2  = 1 Solution It is an ellipse. The standard form of the ellipse is                                                         ( x - h

Types of series - telescoping series, Telescoping Series  It's now tim...

Telescoping Series  It's now time to look at the telescoping series.  In this section we are going to look at a series that is termed a telescoping series.  The name in this c

What is a percentage, Q. What is a percentage? Ans. Percent  mean...

Q. What is a percentage? Ans. Percent  means "per hundred", or "out of 100". A percentage can be written as a ratio, or fraction, where the denominator (bottom) is 100.

Objective functions, For schedule consistency, you decide to require each o...

For schedule consistency, you decide to require each officer to report for their eight-hour shift at 12 AM, 4 AM, 8 AM, 12 PM, 4 PM, or 8 PM. As the Director of Public Safety, you

Find out the domain of function - three dimensional space, Find out the dom...

Find out the domain of each of the following.  (a) f (x,y) = √ (x+y) (b) f (x,y) = √x+√y  (c) f (x,y) = ln (9 - x 2 - 9y 2 ) Solution (a) In this example we know

.fractions, what is the difference between North America''s part of the tot...

what is the difference between North America''s part of the total population and Africa''s part

Trinomial x2 + 2x + 1 what are the dimensions of the field, A farmer's rect...

A farmer's rectangular field has an area in which can be expressed as the trinomial x2 + 2x + 1. In terms of x, what are the dimensions of the field? Because the formula for th

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd