Theorem on intervals of validity, Mathematics

Assignment Help:

Theorem

Consider the subsequent IVP.

y′ =  p (t ) y = g (t )

 y (t0)= y0

If p(t) and g(t) are continuous functions upon an open interval a < t  < b and the interval includes to, after that there is a unique solution to the IVP on such interval.

 Therefore, just what does this theorem tell us? Initially, it tells us that for nice adequate linear first order differential equations solutions are guaranteed to exist and more significantly the solution will be particular. We may not be capable to get the solution, but do identify that it exists and which there will only be one of them. It is the very significant aspect of this theorem. Identifying that a differential equation has a unique solution is probably more significant than actually having the solution itself!

Subsequently, if the interval in the theorem is the largest possible interval on that p(t) and g(t) are continuous so the interval is the interval of validity for the solution. This means that for linear first order differential equations, we won't want to actually solve the differential equation in order to get the interval of validity. See that the interval of validity will based only partially on the initial condition. The interval should hold to, but the value of yo, has no consequence on the interval of validity.


Related Discussions:- Theorem on intervals of validity

Factorization example, Example  Factorize x 2 - 4x + 4. If ...

Example  Factorize x 2 - 4x + 4. If we substitute x = 1, the value of the expression will be (1) 2 - 4(1) + 4 = 1 If we substitute x = -1, the value o

Constructions, Draw a line segment AB of length 4.4cm. Taking A as centre, ...

Draw a line segment AB of length 4.4cm. Taking A as centre, draw a circle of radius. 2cm and taking B as centre, draw another circle of radius 2.2cm. Construct tangents to each cir

Two circles c(o, Two circles C(O, r) and C 1 (O 1 , r 1 ) touch each other ...

Two circles C(O, r) and C 1 (O 1 , r 1 ) touch each other at P, externally or internally.  Construction: join OP and O 1 P . Proof : we know that if two circles touch each

Hydrostatic pressure and force - applications of integrals, Hydrostatic Pre...

Hydrostatic Pressure and Force - Applications of integrals In this part we are going to submerge a vertical plate in water and we wish to know the force that is exerted on t

Compute the dot product for the equation, Compute the dot product for each ...

Compute the dot product for each of the subsequent equation  (a) v → = 5i → - 8j → , w → = i → + 2j →  (b) a → = (0, 3, -7) , b → = (2, 3,1) Solution (a) v →

Geometric applications to the cross product, Geometric Applications to the ...

Geometric Applications to the Cross Product There are a so many geometric applications to the cross product also.  Assume we have three vectors a → , b → and c → and we make

Symmetric and anti-symmetric relation on a set, 1. Let A = {1,2, 3,..., n} ...

1. Let A = {1,2, 3,..., n} (a) How many relations on A are both symmetric and anti-symmetric? (b) If R is a relation on A that is anti-symmetric, what is the maximum number o

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd