Theorem on intervals of validity, Mathematics

Assignment Help:

Theorem

Consider the subsequent IVP.

y′ =  p (t ) y = g (t )

 y (t0)= y0

If p(t) and g(t) are continuous functions upon an open interval a < t  < b and the interval includes to, after that there is a unique solution to the IVP on such interval.

 Therefore, just what does this theorem tell us? Initially, it tells us that for nice adequate linear first order differential equations solutions are guaranteed to exist and more significantly the solution will be particular. We may not be capable to get the solution, but do identify that it exists and which there will only be one of them. It is the very significant aspect of this theorem. Identifying that a differential equation has a unique solution is probably more significant than actually having the solution itself!

Subsequently, if the interval in the theorem is the largest possible interval on that p(t) and g(t) are continuous so the interval is the interval of validity for the solution. This means that for linear first order differential equations, we won't want to actually solve the differential equation in order to get the interval of validity. See that the interval of validity will based only partially on the initial condition. The interval should hold to, but the value of yo, has no consequence on the interval of validity.


Related Discussions:- Theorem on intervals of validity

Find the equation to the pair of lines - coordinate geometry, 1. Find the n...

1. Find the number of zeroes of the polynomial y = f(x) whose graph is given in figure. 2 Find the circumcentre of the triangle whose vertices are (-2, -3), (-1, 0) and (7,-6).

Binomial mathematical properties, Binomial Mathematical Properties 1. ...

Binomial Mathematical Properties 1. The expected or mean value = n × p = np Whereas; n = Sample Size p = Probability of success 2. The variance = npq Whereas; q =

Calculate the area of the skirt to the nearest foot, Pat is making a Christ...

Pat is making a Christmas tree skirt. She needs to know how much fabric to buy. Using the example provided, calculate the area of the skirt to the nearest foot. a. 37.7 ft 2

Probability, julie has 3 hats and 5 scarves. How many ways can she wear a h...

julie has 3 hats and 5 scarves. How many ways can she wear a hat and a scarf?

INVESTING MONEY, HOW MANY SHARES CAN I BUY WITH 1000 DOLLARS

HOW MANY SHARES CAN I BUY WITH 1000 DOLLARS

Find out the roots of the subsequent pure quadratic equation, Find out the ...

Find out the roots of the subsequent pure quadratic equation: Find out the roots of the subsequent pure quadratic equation. 4x 2 - 100 = 0 Solution: Using Equation

1 application of complex analysis in THERMODYNAMICS, Hi, this is EBADULLA ...

Hi, this is EBADULLA its about math assignment. 1 application of complex analysis used in thermodynamics. . what all uses are there in that... plz let mee know this answer.

Minimax regret method -decision making under uncertainty, MINIMAX regret me...

MINIMAX regret method Minimax method assumes that the decision maker will experience 'regret' after he has made the decision and the events have happened. The decision maker ch

How i get orders, how i become an assignment helper?n how i get order from ...

how i become an assignment helper?n how i get order from students?what should i do

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd