Theorem of continuous functions, Mathematics

Assignment Help:

Consider the subsequent IVP.

y' = f(t,y) ,        y(t0) = y0

If f(t,y) and ∂f/∂y are continuous functions in several rectangle a < t < b, g < y  < d, containing the point  (to, yo) then there is a unique solution to the IVP in some interval to - h < t < to + h which is included in a < t < b.

That's it.  Unlike the first theorem, this one cannot really be used to find an interval of validity. Thus, we will know that a unique solution exists if the conditions of the theorem are met, but we will in fact need the solution in order to find out its interval of validity.  Remember as well that for non-linear differential equations it emerges that the value of y0 may influence the interval of validity.

Here is an illustration of the problems that can happen when the conditions of this theorem are not met.


Related Discussions:- Theorem of continuous functions

Mount everest is 29, Mount Everest is 29,028 ft high. Mount Kilimanjaro is ...

Mount Everest is 29,028 ft high. Mount Kilimanjaro is 19,340 ft high. How much taller is Mount Everest? Subtract Mt. Kilimanjaro's height from Mt. Everest's height; 29,028 - 19

Powerball odds., I need to know how to get the power ball odds. the first o...

I need to know how to get the power ball odds. the first one 5 out of 59 plus 1 out of 35 I got .I did combination formula and it came out right. how do you get 5 out 0f 59 and get

About matrix?, Explain sparse matrix and Dense matrix?

Explain sparse matrix and Dense matrix?

Definition of vertical asymptote, Vertical asymptote Definition : The funct...

Vertical asymptote Definition : The function f(x) will contain a vertical asymptote at x = a if we contain any of the following limits at x = a .   x→a- Note as well that it

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd