Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Consider the subsequent IVP.
y' = f(t,y) , y(t0) = y0
If f(t,y) and ∂f/∂y are continuous functions in several rectangle a < t < b, g < y < d, containing the point (to, yo) then there is a unique solution to the IVP in some interval to - h < t < to + h which is included in a < t < b.
That's it. Unlike the first theorem, this one cannot really be used to find an interval of validity. Thus, we will know that a unique solution exists if the conditions of the theorem are met, but we will in fact need the solution in order to find out its interval of validity. Remember as well that for non-linear differential equations it emerges that the value of y0 may influence the interval of validity.
Here is an illustration of the problems that can happen when the conditions of this theorem are not met.
If the p th term of an AP is q and the q th term is p. P.T its n th term is (p+q-n). Ans: APQ a p = q a q = p a n = ? a + (p-1) d = q a + (q-1) d = p
Evaluate the perimeter of the plot of land. a. 260 m b. 340 m c. 360 m d. 320 m To evaluate the perimeter, we must know the length of all sides. According to the dia
A graph G has 21 Edges, 3 vertices of degree 4 and other vertices are of degree 3. Find the number of vertices in G. Ans: It is specified that graph G has 21 edges, so total
Help me in my math!
Assume A and B are symmetric. Explain why the following are symmetric or not. 1) A^2 - B^2 2) (A+B)(A-B) 3) ABA 4) ABAB 5) (A^2)B
The value of y that minimizes the sum of the two distances from (3,5) to (1,y) and from (1,y) to (4,9) can be written as a/b where a and b are coprime positive integers. Find a+b.
More Volume Problems : Under this section we are decide to take a look at several more volume problems. Though, the problems we see now will not be solids of revolution while we
Circles In this section we are going to take a rapid look at circles. Though, prior to we do that we have to give a quick formula that expectantly you'll recall seeing at som
Evaluate the area of the shaded region in terms of π. a. 8 - 4π b. 16 - 4π c. 16 - 2π d. 2π- 16 b. The area of the shaded region is same to the area of the squa
Find the distance between the points (b + c, c + a) and (c + a, a + b) . Ans : Use distance formula
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd