Theorem of continuous functions, Mathematics

Assignment Help:

Consider the subsequent IVP.

y' = f(t,y) ,        y(t0) = y0

If f(t,y) and ∂f/∂y are continuous functions in several rectangle a < t < b, g < y  < d, containing the point  (to, yo) then there is a unique solution to the IVP in some interval to - h < t < to + h which is included in a < t < b.

That's it.  Unlike the first theorem, this one cannot really be used to find an interval of validity. Thus, we will know that a unique solution exists if the conditions of the theorem are met, but we will in fact need the solution in order to find out its interval of validity.  Remember as well that for non-linear differential equations it emerges that the value of y0 may influence the interval of validity.

Here is an illustration of the problems that can happen when the conditions of this theorem are not met.


Related Discussions:- Theorem of continuous functions

the system by graphing, Suppose you are in the market for a new home and a...

Suppose you are in the market for a new home and are interested in a new housing community under construction in a another city. a) The sales representative later shows that there

Assignment Help, I would like to work on Assignment help in Mathematics

I would like to work on Assignment help in Mathematics

Distinct eigenvalues –system solving, DISTINCT EIGENVALUES -SYSTEM SOLVING ...

DISTINCT EIGENVALUES -SYSTEM SOLVING : E xample Solve the following IVP. Solution : Therefore, the first thing that we must to do that is, get the eigenvalues

Find the number of students side of the square, A teacher on attempting to ...

A teacher on attempting to arrange the students for mass drill in the form of a solid square found that 24 students were left over. When he increased the size of the square by one

Hypothesis test, Describe, in your own words, the following terms and give ...

Describe, in your own words, the following terms and give an example of each. Your examples are not to be those given in the lecture notes, or provided in the textbook. By the en

Derivative for parametric equations, Derivative for Parametric Equations ...

Derivative for Parametric Equations dx/dy = (dx/dt) / (dy/dt) ,         given dy/dt ≠ 0 Why would we wish to do this? Well, remind that in the arc length section of the Appl

Average function value of even and odd function, Average Function Value ...

Average Function Value The first application of integrals which we'll see is the average value of a function. The given fact tells us how to calculate this. Average Functi

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd