Theorem of continuous functions, Mathematics

Assignment Help:

Consider the subsequent IVP.

y' = f(t,y) ,        y(t0) = y0

If f(t,y) and ∂f/∂y are continuous functions in several rectangle a < t < b, g < y  < d, containing the point  (to, yo) then there is a unique solution to the IVP in some interval to - h < t < to + h which is included in a < t < b.

That's it.  Unlike the first theorem, this one cannot really be used to find an interval of validity. Thus, we will know that a unique solution exists if the conditions of the theorem are met, but we will in fact need the solution in order to find out its interval of validity.  Remember as well that for non-linear differential equations it emerges that the value of y0 may influence the interval of validity.

Here is an illustration of the problems that can happen when the conditions of this theorem are not met.


Related Discussions:- Theorem of continuous functions

Find lim sup, 1.find lim sup Ek and liminf Ek of Ek=[(-(1/k),1] for k odd a...

1.find lim sup Ek and liminf Ek of Ek=[(-(1/k),1] for k odd and liminf Ek=[(-1,(1/k)] for k even.  2.Show that the set E = {x in R^2 : x1, x2 in Q} is dense in R^2.  3.let r>0 an

The central limit theorem, The Central Limit Theorem  The theories was ...

The Central Limit Theorem  The theories was introduced by De Moivre and according to it; if we choose a large number of simple random samples, says from any population and find

One-sided limits, One-sided limits: We do this along with one-sided limits...

One-sided limits: We do this along with one-sided limits.  As the name implies, with one-sided limits we will just looking at one side of the point in question.  Following are the

Operation research, i have assignment in operatuion research can you help m...

i have assignment in operatuion research can you help me

Ellipse, How we find locus of the middle points of chord of an ellipse whic...

How we find locus of the middle points of chord of an ellipse which are drawn through the positive end of the minor axes

The equation of the tangent, Consider the function f(x) = 2x 2 + 1. Find ...

Consider the function f(x) = 2x 2 + 1. Find the equation of the tangent to the graph of f(x) at x = 2. [NOTE: when calculating f'(2), use first principles.

Properties of logarithms, Properties of Logarithms 1. log a x...

Properties of Logarithms 1. log a xy = log a x + log a y 2.  = log a x - log a y 3. log a x n   = n log

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd