Theorem, from definition of derivative, Mathematics

Assignment Help:

Theorem, from Definition of Derivative

 If f(x) is differentiable at x = a then f(x) is continuous at x =a.

Proof : Since f(x) is differentiable at x = a we know,

f'(a) = lim x→a (f(x) - f(a))/(x - a)

exists. We will require this in some.

 If we next suppose that x ≠ a we can write the as given below,

f(x) - f(a) = ((f(x) - f(a))/( x -a)) (x -a)

Afterward fundamental properties of limits tells us as we have,

lim x→a (f(x) - f(a)) = lim x→a [((f(x) - f(a))/(x - a)) (x -a)]

= lim x→a (f(x) - f(a))/(x - a) lim x→a (x -a)

The primary limit on the right is only f′(a) as we considered above and the second limit is obviously zero and therefore,

lim x→a (f(x) - f(a)) = f'(a).0 = 0

So we've managed to prove as,

lim x→a (f(x) - f(a)) = 0

Although just how does this help us to x= a, prove that f(x) is continuous at x = a?

 Let's establish with the subsequent.

lim x→a (f(x)) = lim x→a [f(x) + f(a) - f(a)]

Remember that we have just added in zero upon the right side. Some rewriting and the utilize of limit properties provides,

limx→a (f(x)) = limx→a [f(a) + f(x) - f(a)]

= limx→a f(a) + limx→a [f(x) - f(a)]

Here, we only proved above that limx→a [f(x) - f(a)] = 0 and since f(a) is a constant we also know that limx→a f(a) = f(a), then it should be,

limx→a f(x) = limx→a f(a) = 0 = f(a)

Or conversely, limx→a f(x) = f(a) although it is exactly what this means for f(x) is continuous at x = a and therefore we are done.


Related Discussions:- Theorem, from definition of derivative

Finance, Determine the value of a $1800 investment after six years at 9.3% ...

Determine the value of a $1800 investment after six years at 9.3% per year, simple interest

Relate Fractions and Whole Numbers, Jon ran around a track that was one eig...

Jon ran around a track that was one eighth of a mile long.He ran around the track twenty four times.How many miles did Jon run in all

Diferential equations, Find the normalized differential equation which has ...

Find the normalized differential equation which has {x, xex} as its fundamental set

Limits, Limits The concept of a limit is fundamental in calculus....

Limits The concept of a limit is fundamental in calculus. Often, we are interested to know the behavior of f(x) as the independent variable x approaches some

Relationship between the entries of a rotation matrix, 1. A 3d rotation mat...

1. A 3d rotation matrix has 9 (3 by 3) entries, and a 2d rotation matrix has 4 (2 by 2) entries. How many actual degrees of freedom are there in a 3d or 2d rotation? In other words

Triangles, about scalene,equilateral and isosceles.

about scalene,equilateral and isosceles.

Solve 9 sin ( 2 x )= -5 cos(2x ) on[-10, Solve 9 sin ( 2 x )= -5 cos(2x ) o...

Solve 9 sin ( 2 x )= -5 cos(2x ) on[-10,0]. Solution At first glance this problem appears to be at odds with the sentence preceding the example. However, it really isn't.

Maths question, if the numerator of a fraction is decreased by 40% and the ...

if the numerator of a fraction is decreased by 40% and the denominator is increased by 100% the new value is 1. what was the original factor

Determine the projection - vector, Determine the Projection of b = (2, 1, -...

Determine the Projection of b = (2, 1, -1) onto a = (1, 0, -2) There is a requirement of a dot product and the magnitude of a. a →  • b → = 4                             ||a

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd