Theorem, from definition of derivative, Mathematics

Assignment Help:

Theorem, from Definition of Derivative

 If f(x) is differentiable at x = a then f(x) is continuous at x =a.

Proof : Since f(x) is differentiable at x = a we know,

f'(a) = lim x→a (f(x) - f(a))/(x - a)

exists. We will require this in some.

 If we next suppose that x ≠ a we can write the as given below,

f(x) - f(a) = ((f(x) - f(a))/( x -a)) (x -a)

Afterward fundamental properties of limits tells us as we have,

lim x→a (f(x) - f(a)) = lim x→a [((f(x) - f(a))/(x - a)) (x -a)]

= lim x→a (f(x) - f(a))/(x - a) lim x→a (x -a)

The primary limit on the right is only f′(a) as we considered above and the second limit is obviously zero and therefore,

lim x→a (f(x) - f(a)) = f'(a).0 = 0

So we've managed to prove as,

lim x→a (f(x) - f(a)) = 0

Although just how does this help us to x= a, prove that f(x) is continuous at x = a?

 Let's establish with the subsequent.

lim x→a (f(x)) = lim x→a [f(x) + f(a) - f(a)]

Remember that we have just added in zero upon the right side. Some rewriting and the utilize of limit properties provides,

limx→a (f(x)) = limx→a [f(a) + f(x) - f(a)]

= limx→a f(a) + limx→a [f(x) - f(a)]

Here, we only proved above that limx→a [f(x) - f(a)] = 0 and since f(a) is a constant we also know that limx→a f(a) = f(a), then it should be,

limx→a f(x) = limx→a f(a) = 0 = f(a)

Or conversely, limx→a f(x) = f(a) although it is exactly what this means for f(x) is continuous at x = a and therefore we are done.


Related Discussions:- Theorem, from definition of derivative

Factoring trinomial, what is the factor of the trinomial 2x2-7x-4

what is the factor of the trinomial 2x2-7x-4

Fundamental theorem of integral facts , Fundamental Theorem of Calculus, Pa...

Fundamental Theorem of Calculus, Part II  Assume f(x) is a continuous function on [a,b] and also assume that F(x) is any anti- derivative for f(x). Hence, a ∫ b f(x) dx =

Calculus with vector functions - three dimensional space, Calculus with Vec...

Calculus with Vector Functions In this part we need to talk concisely on derivatives, limits and integrals of vector functions. Like you will see, these behave in a quite pred

Determine how maximum revenue with transportation model, The government is...

The government is auctioning off oil leases at two sites. At each site, 100,000 acres of land are to be auctioned. Cliff Ewing, Blake Barnes and Alexis Pickens are bidding for the

Trignometry, whta are the formulas needed for proving in trignometry .

whta are the formulas needed for proving in trignometry .

Example of division , Example of division: Divide 738 by 83. Soluti...

Example of division: Divide 738 by 83. Solution: Example: Divide 6409 by 28. Solution: Division could be verified through multiplying

Trivial solution of equation, Specified a system of equations, (1), we will...

Specified a system of equations, (1), we will have one of the three probabilities for the number of solutions. 1.   No solution. 2.   Accurately one solution. 3.   Infinit

What was the temperature at midnight, The temperature at 6 P.M. was 31°F. T...

The temperature at 6 P.M. was 31°F. Through midnight, it had dropped 40°F. What was the temperature at midnight? Visualize a number line. The drop from 31° to 0° is 31°. There

Definition of vertical asymptote, Vertical asymptote Definition : The funct...

Vertical asymptote Definition : The function f(x) will contain a vertical asymptote at x = a if we contain any of the following limits at x = a .   x→a- Note as well that it

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd