The second normal form (2nf), Database Management System

Assignment Help:

The Second Normal Form (2NF)

Definition: A relation is in 2NF if it is in 1NF and each non-key attribute is fully dependent on each candidate key of the relation.

Some of the points that should be noted here are:

  • A relation having a one attribute key has to be in 2NF.
  • In the case of composite key, partial dependency on key that is part of the key is not allowed.
  • 2NF tries to make sure that information in one relation is about one thing
  • Non-key attributes are those that are not part of any candidate key.

Let us now reconsider, which describes the FDs of the relation to the relation STUDENT (Enrolmentno, Sname, Address, Cno, Cname, Instructor, Office). These FDs can also be written as:

Enrolmentno     →         Sname,           Address     (1)

Cno                 →           Cname,           Instructor  (2)

Instructor        →                                   Office        (3)

 

The key attributes of the relation are (Cno + Enrolmentno). Rest of the attributes are non-key attributes. For the 2NF decomposition, we are concerned with the FDs (1) and (2) as above as they relate to partial dependence on the key that is (Cno +Enrolmentno). As these dependencies illustrates that relation in not in 2NF and therefore suffer from all the three anomalies and redundancy troubles as many non-key attributes can be derived from partial key attribute. To change the relation into 2NF, let us use FDs. As per FD (1) the Enrolment number uniquely verify student name and address, so one relation should be:

STUDENT1 (Enrolmentno, Address, Sname)

Now as per FD (2) we can decompose the relation more, but what about the attribute 'Office'?

We find in FD (2) that Course code (Cno) attribute uniquely shows the name of instructor (refer to FD 2(a)). Also the FD (3) means that name of the instructor uniquely shows office number. This can be written as:

Cno        →             Instructor                  (2 (a)) (without Cname)

Instructor          →                                    Office            (3)

⇒      Cno      →                                      Office  (This is transitive dependency)

 

Therefore, FD (2) now can be rewritten as:

Cno                  →         Cname, Instructor, Office           (2')

This FD, now provides us the second decomposed relation:

COU_INST (Cno, Cname, Instruction, Office)

Therefore, the relation STUDENT has been decomposed into two relations:

STUDENT1 (Enrolmentno, Sname, Address) COU_INST (Cno, Cname, Instruction, Office)

Is the decomposition into 2NF finish now?

No, how would you join the two relations formed above any way? Please note we have super FDs as, because (Cno +Enrolmentno) is the primary key of the relation STUDENT:

Enrolmentno, Cno       →        ALL ATTRIBUTES

Every attributes except for the key attributes that are Cno and Enrolmentno, Though, are covered on the right side of the FDs (1) (2) and (3), therefore, making the FD as redundant. But in any situation we have to have a relation that connects the two decomposed relations. This relation would cover any attributes of Super FD that have not been covered by the key attributes and the decomposition. Therefore, we need to make a joining relation as:

COURSE_STUDENT (Enrolmentno, Cno)

 So, the relation STUDENT in 2NF form would be:

STUDENT1 (Enrolmentno, Sname, Address)                   2NF(a)

 COU_INST (Cno, Cname, Instruction, Office)                 2NF(b)

 COURSE_STUDENT (Enrolmentno, Cno)                         2NF(c)


Related Discussions:- The second normal form (2nf)

The proliferation of object-oriented methods, The Proliferation of Object-O...

The Proliferation of Object-Oriented Methods The first few years of the 1990s saw blossoming of around fifty various object oriented methods. This proliferation is a sign of g

Define the canonical cover, Define the Canonical cover Ans: A canonical...

Define the Canonical cover Ans: A canonical cover F c for F is a set of dependencies like F logically implies all dependencies in F c , and F c logically entails all dependen

Hashing.., various techniques of hashing?

various techniques of hashing?

List the steps for converting state diagram to the code, List the steps for...

List the steps for converting state diagram to the code. a) Finding major control path b) Finding the conditional statements  c) Finding the loops  d) Finding error ro

Explain the deferred update, Explain the Deferred Update The deferred ...

Explain the Deferred Update The deferred update methods do not physically update the database on disk till after a transaction reaches its commit point; after that the updates

Explain the management of data store, Explain the Management of Data Store ...

Explain the Management of Data Store Every system irrespective of its nature of application requires storing permanent data for consequent use in problem solving. Some objects

Database management issues, You are required to write a report which evalua...

You are required to write a report which evaluates two of the following issues in relation to your case study database: a. Security issues b. Performance issues c. Backup

Explain consistency model , Explain in detail the consistency model of the ...

Explain in detail the consistency model of the distributed file system you studied (GFS or AFS). Present the consistency model chosen and how it was achieved through design. Clarit

#, How to use Oracle

How to use Oracle

Explain the term - control as concurrent tasks, Explain the term - Control ...

Explain the term - Control as Concurrent Tasks As we know, any object can be implemented as a task in programming language or operating system. This is the most general approa

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd