The mean value theorem with proof, Mathematics

Assignment Help:

The Mean Value Theorem

 Assume f(x) is a function that satisfies both of the subsequent.

1.   f(x) is continuous on the closed interval [a,b].

2.   f(x) is differentiable on the open interval (a,b).

So there is a number c such that a < c < b and

f'(c) = (f(b) - f(a))/(b -a)

Or f(b) - f(a) = f'(c) (b - a)

 Proof

For illustration reasons let's assume that the graph of f(x) is,

154_mean value1.png

Note certainly that this may not seem as this, but we just require a fast sketch to make this easier to notice what we're talking about now.

The first thing is which we require is the equation of the secant line that goes through the two points A and B as demonstrated above. It is,

y = f(a) + ((f(b) - f(a))/(b -a)) (x -a)

Let's here define a new function, g(x), as to be the difference among f(x) and the equation of the secant line or,

 g(x) =  f(x) - (f(a) + ((f(b) - f(a))/(b -a)) (x -a))

= f(x) - f(a) - (f(b) - f(a))/(b -a) (x -a))

Next, let's see that g(x) is the total of f(x) that is assumed to be continuous on [a,b], and a linear polynomial, that we know to be continuous all over, we know that g(x) should also be continuous on [a,b].

 Also, we can notice that g(x) should be differentiable on (a,b) since this is the total of f(x), that is assumed to be differentiable on (a,b), and a linear polynomial, that we know to be differentiable.

We could also have only calculated the derivative as follows,

g'(x) =  f(x) - (f(a) + ((f(b) - f(a))/(b -a))

At that point we can notice that this exists on (a,b) as we assumed that f′(x) exists on (a,b)and the last term is only a constant.

At last, we have,

g(a) =  f(a) - (f(a) + ((f(b) - f(a))/(b -a)) (a -a))

= f(a) - f(a) = 0

g(b) =  f(b) - (f(a) + ((f(b) - f(a))/(b -a)) (b -a))

= f(b) - f(a) -(f(b) - f(a))= 0

Conversely, g(x) satisfies the three conditions of Rolle's Theorem and therefore we know that there should be a number c as a < c < b and that,

0 = g'(c) = f'(c) - ((f(b) - f(a))/(b -a))              =>                    f'(c) = ((f(b) - f(a))/(b -a))


Related Discussions:- The mean value theorem with proof

Alcohol Solutions, If you have 60% alcohol and wish to dilute with water to...

If you have 60% alcohol and wish to dilute with water to make 12 liters 40% alcohol, How many liters of water should you add?

Profit maximization, a medical clinic performs three types of medical tests...

a medical clinic performs three types of medical tests that use the same machines. Tests A, B,and C take 15 minutes, 30 minutes and 1 hours respectively, with respective profits of

Promote products and services, please let us know above promote products an...

please let us know above promote products and services..i gave the assignment from my collage

Quartic polynomial, Question: Let f be a quartic polynomial (ie. a poly...

Question: Let f be a quartic polynomial (ie. a polynomial of degree 4). Suppose that f has zeros at -2; 1; 3; 4 and that f(0) = 4. Sketch a graph of f. If f(x) is

Math, what is 24566x12567=

what is 24566x12567=

Probability, There are 20 defective bulbs in a box of 100 bulbs.if 10bulbs ...

There are 20 defective bulbs in a box of 100 bulbs.if 10bulbs are choosen at random then what is the probability of there are just 3defective bulbs

Repeated roots, Under this section we will be looking at the previous case ...

Under this section we will be looking at the previous case for the constant coefficient and linear and homogeneous second order differential equations.  In this case we need soluti

Arithmetic mean, When three quantities are in A.P., then the middle...

When three quantities are in A.P., then the middle one is said to be the arithmetic  mean of the other two. That is, if a, b and c are in A.P., then b is th

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd