The mean value theorem with proof, Mathematics

Assignment Help:

The Mean Value Theorem

 Assume f(x) is a function that satisfies both of the subsequent.

1.   f(x) is continuous on the closed interval [a,b].

2.   f(x) is differentiable on the open interval (a,b).

So there is a number c such that a < c < b and

f'(c) = (f(b) - f(a))/(b -a)

Or f(b) - f(a) = f'(c) (b - a)

 Proof

For illustration reasons let's assume that the graph of f(x) is,

154_mean value1.png

Note certainly that this may not seem as this, but we just require a fast sketch to make this easier to notice what we're talking about now.

The first thing is which we require is the equation of the secant line that goes through the two points A and B as demonstrated above. It is,

y = f(a) + ((f(b) - f(a))/(b -a)) (x -a)

Let's here define a new function, g(x), as to be the difference among f(x) and the equation of the secant line or,

 g(x) =  f(x) - (f(a) + ((f(b) - f(a))/(b -a)) (x -a))

= f(x) - f(a) - (f(b) - f(a))/(b -a) (x -a))

Next, let's see that g(x) is the total of f(x) that is assumed to be continuous on [a,b], and a linear polynomial, that we know to be continuous all over, we know that g(x) should also be continuous on [a,b].

 Also, we can notice that g(x) should be differentiable on (a,b) since this is the total of f(x), that is assumed to be differentiable on (a,b), and a linear polynomial, that we know to be differentiable.

We could also have only calculated the derivative as follows,

g'(x) =  f(x) - (f(a) + ((f(b) - f(a))/(b -a))

At that point we can notice that this exists on (a,b) as we assumed that f′(x) exists on (a,b)and the last term is only a constant.

At last, we have,

g(a) =  f(a) - (f(a) + ((f(b) - f(a))/(b -a)) (a -a))

= f(a) - f(a) = 0

g(b) =  f(b) - (f(a) + ((f(b) - f(a))/(b -a)) (b -a))

= f(b) - f(a) -(f(b) - f(a))= 0

Conversely, g(x) satisfies the three conditions of Rolle's Theorem and therefore we know that there should be a number c as a < c < b and that,

0 = g'(c) = f'(c) - ((f(b) - f(a))/(b -a))              =>                    f'(c) = ((f(b) - f(a))/(b -a))


Related Discussions:- The mean value theorem with proof

Differential equation, Suppose a fluid (say, water) occupies a domain D? R^...

Suppose a fluid (say, water) occupies a domain D? R^(3 ) and has velocity field V=V(x, t). A substance (say, a day) is suspended into the fluid and will be transported by the fluid

Comparison test for improper integrals - integration, Comparison Test for I...

Comparison Test for Improper Integrals Here now that we've seen how to actually calculate improper integrals we should to address one more topic about them.  Frequently we ar

Finding the area of a triangle, Q. Finding the Area of a Triangle? Ther...

Q. Finding the Area of a Triangle? There are three commonly used methods to find the area of a triangle. The method you use to find the area depends on the information you kno

Fractions, Rider dribbles the ball 1/3 of the basketball court on the first...

Rider dribbles the ball 1/3 of the basketball court on the first day of practice. Each day after that he dribbles 1/3 of the way more than he did the day before. Draw a number lin

Take home test, what is 36 percent as a fraction in simplest form

what is 36 percent as a fraction in simplest form

Estimate the rms value and prominent features, Figure shows the auto-spect...

Figure shows the auto-spectral density for a signal from an accelerometer which was attached to the front body of a car directly above its front suspension while it was driven at 6

Find the sides of the two squares, The sum of areas of two squares is 468m ...

The sum of areas of two squares is 468m 2  If the difference of their perimeters is 24cm, find the sides of the two squares. Ans:    Let the side of the larger square be x .

Logs, log4^(x+2)=log4^8

log4^(x+2)=log4^8

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd