The mean value theorem with proof, Mathematics

Assignment Help:

The Mean Value Theorem

 Assume f(x) is a function that satisfies both of the subsequent.

1.   f(x) is continuous on the closed interval [a,b].

2.   f(x) is differentiable on the open interval (a,b).

So there is a number c such that a < c < b and

f'(c) = (f(b) - f(a))/(b -a)

Or f(b) - f(a) = f'(c) (b - a)

 Proof

For illustration reasons let's assume that the graph of f(x) is,

154_mean value1.png

Note certainly that this may not seem as this, but we just require a fast sketch to make this easier to notice what we're talking about now.

The first thing is which we require is the equation of the secant line that goes through the two points A and B as demonstrated above. It is,

y = f(a) + ((f(b) - f(a))/(b -a)) (x -a)

Let's here define a new function, g(x), as to be the difference among f(x) and the equation of the secant line or,

 g(x) =  f(x) - (f(a) + ((f(b) - f(a))/(b -a)) (x -a))

= f(x) - f(a) - (f(b) - f(a))/(b -a) (x -a))

Next, let's see that g(x) is the total of f(x) that is assumed to be continuous on [a,b], and a linear polynomial, that we know to be continuous all over, we know that g(x) should also be continuous on [a,b].

 Also, we can notice that g(x) should be differentiable on (a,b) since this is the total of f(x), that is assumed to be differentiable on (a,b), and a linear polynomial, that we know to be differentiable.

We could also have only calculated the derivative as follows,

g'(x) =  f(x) - (f(a) + ((f(b) - f(a))/(b -a))

At that point we can notice that this exists on (a,b) as we assumed that f′(x) exists on (a,b)and the last term is only a constant.

At last, we have,

g(a) =  f(a) - (f(a) + ((f(b) - f(a))/(b -a)) (a -a))

= f(a) - f(a) = 0

g(b) =  f(b) - (f(a) + ((f(b) - f(a))/(b -a)) (b -a))

= f(b) - f(a) -(f(b) - f(a))= 0

Conversely, g(x) satisfies the three conditions of Rolle's Theorem and therefore we know that there should be a number c as a < c < b and that,

0 = g'(c) = f'(c) - ((f(b) - f(a))/(b -a))              =>                    f'(c) = ((f(b) - f(a))/(b -a))


Related Discussions:- The mean value theorem with proof

Trapezoid rule - approximating definite integrals, Trapezoid Rule - Approxi...

Trapezoid Rule - Approximating Definite Integrals For this rule we will do similar set up as for the Midpoint Rule. We will break up the interval [a, b] into n subintervals of

Progressions, The sum of the series 1+1/2+1/4+......is

The sum of the series 1+1/2+1/4+......is

Find out if the sets of vectors are parallel or not, Determine or find out ...

Determine or find out if the sets of vectors are parallel or not. (a) a → = (2,-4,1), b = (-6, 12 , -3) (b) a → = (4,10), b = (2,9) Solution (a) These two vectors

Determine the relative global error, Consider the differential equation giv...

Consider the differential equation give by y′ = -10(y - sin t) (a) Derive by hand exact solution that satis?es the initial condition y(0) = 1. (b) Numerically obtain the s

Marketing management , #How are Indian customers visiting Shoppers’ Stop an...

#How are Indian customers visiting Shoppers’ Stop any different from customers of developed western countries?

North west corner method, What is the history of North west corner method i...

What is the history of North west corner method in transportation problem? Why there are only m+n-1 solution to the transportation problem?

Rounding, round 200 to nearest hundreds

round 200 to nearest hundreds

Determine the property of join in a boolean algebra, Determine that in a Bo...

Determine that in a Boolean algebra, for any a and b, (a Λ b) V (a Λ b' ) = a.  Ans: This can be proved either by using the distributive property of join over meet (or of mee

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd