The mean value theorem with proof, Mathematics

Assignment Help:

The Mean Value Theorem

 Assume f(x) is a function that satisfies both of the subsequent.

1.   f(x) is continuous on the closed interval [a,b].

2.   f(x) is differentiable on the open interval (a,b).

So there is a number c such that a < c < b and

f'(c) = (f(b) - f(a))/(b -a)

Or f(b) - f(a) = f'(c) (b - a)

 Proof

For illustration reasons let's assume that the graph of f(x) is,

154_mean value1.png

Note certainly that this may not seem as this, but we just require a fast sketch to make this easier to notice what we're talking about now.

The first thing is which we require is the equation of the secant line that goes through the two points A and B as demonstrated above. It is,

y = f(a) + ((f(b) - f(a))/(b -a)) (x -a)

Let's here define a new function, g(x), as to be the difference among f(x) and the equation of the secant line or,

 g(x) =  f(x) - (f(a) + ((f(b) - f(a))/(b -a)) (x -a))

= f(x) - f(a) - (f(b) - f(a))/(b -a) (x -a))

Next, let's see that g(x) is the total of f(x) that is assumed to be continuous on [a,b], and a linear polynomial, that we know to be continuous all over, we know that g(x) should also be continuous on [a,b].

 Also, we can notice that g(x) should be differentiable on (a,b) since this is the total of f(x), that is assumed to be differentiable on (a,b), and a linear polynomial, that we know to be differentiable.

We could also have only calculated the derivative as follows,

g'(x) =  f(x) - (f(a) + ((f(b) - f(a))/(b -a))

At that point we can notice that this exists on (a,b) as we assumed that f′(x) exists on (a,b)and the last term is only a constant.

At last, we have,

g(a) =  f(a) - (f(a) + ((f(b) - f(a))/(b -a)) (a -a))

= f(a) - f(a) = 0

g(b) =  f(b) - (f(a) + ((f(b) - f(a))/(b -a)) (b -a))

= f(b) - f(a) -(f(b) - f(a))= 0

Conversely, g(x) satisfies the three conditions of Rolle's Theorem and therefore we know that there should be a number c as a < c < b and that,

0 = g'(c) = f'(c) - ((f(b) - f(a))/(b -a))              =>                    f'(c) = ((f(b) - f(a))/(b -a))


Related Discussions:- The mean value theorem with proof

Finf the value of x or y from given liner equation, 41x + 53y = 135, 53x +4...

41x + 53y = 135, 53x +41y =147 Ans:    41x + 53 y = 135, 53 x + 41 y = 147 Add the two equations : Solve it, to get ... x + y = 3 -------(1) Subtract : Solve it , to

Solving Trig Equations, How would you solve the equation: 1+ sin(theta)= 2 ...

How would you solve the equation: 1+ sin(theta)= 2 cos^2(theta)?

Determine the measure of the vertex angle, Determine the measure of the ver...

Determine the measure of the vertex angle of the isosceles triangle. a. 34° b. 16° c. 58° d. 112° d. Simply substitute x = 34 into the equation for the vertex angle,

+, what is 2+2=

what is 2+2=

Modeling with first order differential equations, We here move to one of th...

We here move to one of the major applications of differential equations both into this class and in general. Modeling is the process of writing a differential equation to explain a

Plane figures, what are the formulas for finding the area and volume of pla...

what are the formulas for finding the area and volume of plane figures

Functions of many variables, There may be more than one independent v...

There may be more than one independent variable which determines the value of y. The dimension of a function is determined by the number of independent variables in the

#title.heat loss in a cylindrical pipe., briefly explain how the famous equ...

briefly explain how the famous equation for the loss of heat in a cylindrical pipe is derived

Add subtract fractions., how do you add and subtract mixed numbers with fra...

how do you add and subtract mixed numbers with fractions

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd