The mean value theorem for integrals of even and odd , Mathematics

Assignment Help:

The Mean Value Theorem for Integrals

If  f (x ) is a continuous function on [a,b] then there is a number c in [a,b] such as,

                                   ∫baf ( x ) dx = f (c ) (b - a )

Note as well that one way to think of this theorem is the following.  Firstly rewrite the result as,

                               1/( b - a)  ∫baf ( x ) dx =f(c)

and from this we can illustrates that this theorem is telling us that there is a number a < c < b such that favg  = f (c ) . Or, in other terms, if f (x) is continuous function then somewhere within [a,b] the function will take on its average value.

Let's take a rapid look at an example using this theorem.

Example:  Find out the number c which satisfies the Mean Value Theorem for Integrals for the function  f ( x ) =x2 + 3x + 2 within the interval [1,4]

 Solution

Firstly let's notice that the function is a polynomial and therefore is continuous on the given interval. It means that we can use the Mean Value Theorem.  Therefore, let's do that.

1 4 x2+3x+2dx = (c2+3c+2)(4-1)

( (1/3)x2 + (3/2) x2 +2x |14 =  3(c2  + 3c + 2)

                                      = 99/2 = 3c2 + 9c + 6

                                  0 = 3c2 + 9c - (87/2)

It is a quadratic equation which we can solve out.  Using the quadratic formula we obtain the following two solutions,

c = (-3 +√67)/2 = 2.593

c = (-3 -√67)/2 = -5.593

Obviously the second number is not within the interval and therefore that isn't the one that we're after. However, the first is in the interval and therefore that's the number we desire.

Note as well that it is possible for both numbers to be in the interval therefore don't expect only one to be in the interval.


Related Discussions:- The mean value theorem for integrals of even and odd

Number of permutations of ''n'' dissimilar things , Finding the numbe...

Finding the number of Permutations of 'n' dissimilar things taken 'r' at a time:  After looking at the definition of permutations, we look at how to evolve a

Relationship between the shortest path distances - tree, 1. a)  Given a dig...

1. a)  Given a digraph G = (V,E), prove that if we add a constant k to the length of every arc coming out from the root node r, the shortest path tree remains the same.  Do this by

Standard form of a complex number, Standard form of a complex number So...

Standard form of a complex number So, let's start out with some of the basic definitions & terminology for complex numbers. The standard form of a complex number is

One tailed test, One Tailed Test It is a test where the alternative hy...

One Tailed Test It is a test where the alternative hypothesis (H 1 :) is only concerned along with one of the tails of the distribution for illustration, to test a business co

Probability rules, Probability Rules A probability is a number as...

Probability Rules A probability is a number assigned to the occurrence of an event in a sample space. Probability measures must satisfy three rules. If A is an even

What are the characteristics of a queuing system, What are the characterist...

What are the characteristics of a queuing system?  (i) The input pattern  (ii) The queue discipline  (iii) The service mechanism

Plane and solid mensuration, the area of a triangle is 20 and its base is 1...

the area of a triangle is 20 and its base is 16. Find the base of a similar triangle whose area is 45. Given is a regular pentagon. Find the measure of angle LHIK.

Area of an ellipse, You know the experation for the area of a circle of rad...

You know the experation for the area of a circle of radius R. It is Pi*R 2 . But what about the formula for the area of an ellipse of semi-minor axis of length A and semi-major

Nemeric patterns, Kelli calls her grandmother every month. Every other mont...

Kelli calls her grandmother every month. Every other month,Kelli also calls her cousin in January, how many calls will Kelli have made to her grandmother and her cousin by the end

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd