The mean value theorem for integrals, Mathematics

Assignment Help:

The Mean Value Theorem for Integrals

If f(x) is a continuous function on [a,b] then here is a number c in [a,b] thus,

ab f(x) dx = f(c)(b -a)

Proof

Let's begin off by defining,

F(x) = ab f(t) dt

Because f(x) is continuous we get alreday from the Fundamental Theorem of Calculus, Part I that F(x) is continuous on [a,b], differentiable on (a,b) and as F′(x) = f(x).

Here, from the Mean Value Theorem we get that here is a number c such as a < c < b and that,

 F(b)- F(a) = F′(c) (b - a)

Though we know that F′(c) = f(c) and,

 F(b) = ab f(t) dt = ab f(x) dx                           F(a) = aa f(t) dt = 0

Therefore we get,

ab f(x) dx = f(c) (b -a)

Work

The work done by the force F(x) as by assuming that F(x) is continuous, over the range a ≤ x ≤ b is,

W = ab F(x) dx

Proof

Let's begin off by dividing the range a ≤ x ≤ b in n subintervals of width ?x and from all of these intervals select the points x1*, x2*,...., xn*.

Here, if n is large and as F(x) is continuous we can suppose that F(x) won't differ by much over each interval and therefore in the ith interval we can suppose that the force is approximately constant along with a value of F(x) ≈ F(x*). The work on every interval is then approximately,

Wi ≈ F(xi*) ?x

The complete work over a ≤ x ≤ b is approximately then,

2170_mean1.png

At last, if we take the limit of that as n goes to infinity we will find the exact work done. Therefore,

1887_mean2.png

It is, though, nothing more than the definition of the definite integral and therefore the work done through the force F(x) over a ≤ x ≤ b is,

W = ab F(x) dx


Related Discussions:- The mean value theorem for integrals

Integers, i do not understand the rules for adding and subtracting integers...

i do not understand the rules for adding and subtracting integers, nor do i understand how to multiply and divide

Pumping lemma for context free languages, 1. Construct a grammar G such tha...

1. Construct a grammar G such that L(G) = L(M) where M is the PDA in the previous question. Then show that the word aaaabb is generated by G. 2. Prove, using the Pumping Lemma f

Find the volume of a right circular cylinder, Find the volume of a right ci...

Find the volume of a right circular cylinder: Calculate the volume and surface area of a right circular cylinder along with r = 3" and h = 4".  Solution: V =      πr 2

Maclaurin series - sequences and series, Maclaurin Series Before w...

Maclaurin Series Before working any illustrations of Taylor Series the first requirement is to address the assumption that a Taylor Series will in fact exist for a specifi

Find out the minimum distance from the origin, Problem 1. Find the maximum...

Problem 1. Find the maximum and the minimum distance from the origin to the ellipse x 2 + xy + y 2 = 3. Hints: (i) Use x 2 + y 2 as your objective function; (ii) You c

Application of statistics-human resource management, Human resource managem...

Human resource management Statistics may be utilized in efficient employ of human resources for example we may provide questionnaires to workers to find out where the manageme

Geometry , solve for x and y 2x+3y=12 and 30x+11y=112

solve for x and y 2x+3y=12 and 30x+11y=112

Taylor series - series solutions to differential equations, Once we get out...

Once we get out of the review, we are not going to be doing a lot with Taylor series, but they are a fine method to get us back into the swing of dealing with power series. Through

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd