The mean value theorem for integrals, Mathematics

Assignment Help:

The Mean Value Theorem for Integrals

If f(x) is a continuous function on [a,b] then here is a number c in [a,b] thus,

ab f(x) dx = f(c)(b -a)

Proof

Let's begin off by defining,

F(x) = ab f(t) dt

Because f(x) is continuous we get alreday from the Fundamental Theorem of Calculus, Part I that F(x) is continuous on [a,b], differentiable on (a,b) and as F′(x) = f(x).

Here, from the Mean Value Theorem we get that here is a number c such as a < c < b and that,

 F(b)- F(a) = F′(c) (b - a)

Though we know that F′(c) = f(c) and,

 F(b) = ab f(t) dt = ab f(x) dx                           F(a) = aa f(t) dt = 0

Therefore we get,

ab f(x) dx = f(c) (b -a)

Work

The work done by the force F(x) as by assuming that F(x) is continuous, over the range a ≤ x ≤ b is,

W = ab F(x) dx

Proof

Let's begin off by dividing the range a ≤ x ≤ b in n subintervals of width ?x and from all of these intervals select the points x1*, x2*,...., xn*.

Here, if n is large and as F(x) is continuous we can suppose that F(x) won't differ by much over each interval and therefore in the ith interval we can suppose that the force is approximately constant along with a value of F(x) ≈ F(x*). The work on every interval is then approximately,

Wi ≈ F(xi*) ?x

The complete work over a ≤ x ≤ b is approximately then,

2170_mean1.png

At last, if we take the limit of that as n goes to infinity we will find the exact work done. Therefore,

1887_mean2.png

It is, though, nothing more than the definition of the definite integral and therefore the work done through the force F(x) over a ≤ x ≤ b is,

W = ab F(x) dx


Related Discussions:- The mean value theorem for integrals

Math, how to compare fractions

how to compare fractions

Find homeomorphisms - complex root, All numbers refer to exercises (and not...

All numbers refer to exercises (and not "computer exercises") in Gallian. §22: 8, 16, 22, 24, 28, 36. In addition: Problem 1: Let a be a complex root of the polynomial x 6 +

I want to learn mathematics, I was never really good at mathematics what is...

I was never really good at mathematics what is the best way? I am reading Math better explained but is there anything else I can do? I want to study advanced topics and get a good

The length of the rectangle is 2 inches more than the width, The area of a ...

The area of a rectangle is 24 square inches. The length of the rectangle is 2 inches more than the width. How many inches is the width? Let x = the number of inches in the widt

Rules of game theory, Rules Of Game Theory i.   The number of competito...

Rules Of Game Theory i.   The number of competitors is finite ii.   There is conflict of interests among the participants iii.  Each of these participants has available t

Shares and divident, A man invest ?13500 partly in shares paying 6% at ?140...

A man invest ?13500 partly in shares paying 6% at ?140 and partly in 5% at 125.If he is tolal income is 560, how much has he invested in each?

Mount everest is 29, Mount Everest is 29,028 ft high. Mount Kilimanjaro is ...

Mount Everest is 29,028 ft high. Mount Kilimanjaro is 19,340 ft high. How much taller is Mount Everest? Subtract Mt. Kilimanjaro's height from Mt. Everest's height; 29,028 - 19

Find the shortest length of wire needed, A 125-foot tower is located on the...

A 125-foot tower is located on the side of a mountain that is inclined at 32° to the horizontal. A guy wire is to be fitted to the top of the tower and anchored at a point 55 feet

Fractions, #how do I add fractions?

#how do I add fractions?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd