The mean value theorem for integrals, Mathematics

Assignment Help:

The Mean Value Theorem for Integrals

If f(x) is a continuous function on [a,b] then here is a number c in [a,b] thus,

ab f(x) dx = f(c)(b -a)

Proof

Let's begin off by defining,

F(x) = ab f(t) dt

Because f(x) is continuous we get alreday from the Fundamental Theorem of Calculus, Part I that F(x) is continuous on [a,b], differentiable on (a,b) and as F′(x) = f(x).

Here, from the Mean Value Theorem we get that here is a number c such as a < c < b and that,

 F(b)- F(a) = F′(c) (b - a)

Though we know that F′(c) = f(c) and,

 F(b) = ab f(t) dt = ab f(x) dx                           F(a) = aa f(t) dt = 0

Therefore we get,

ab f(x) dx = f(c) (b -a)

Work

The work done by the force F(x) as by assuming that F(x) is continuous, over the range a ≤ x ≤ b is,

W = ab F(x) dx

Proof

Let's begin off by dividing the range a ≤ x ≤ b in n subintervals of width ?x and from all of these intervals select the points x1*, x2*,...., xn*.

Here, if n is large and as F(x) is continuous we can suppose that F(x) won't differ by much over each interval and therefore in the ith interval we can suppose that the force is approximately constant along with a value of F(x) ≈ F(x*). The work on every interval is then approximately,

Wi ≈ F(xi*) ?x

The complete work over a ≤ x ≤ b is approximately then,

2170_mean1.png

At last, if we take the limit of that as n goes to infinity we will find the exact work done. Therefore,

1887_mean2.png

It is, though, nothing more than the definition of the definite integral and therefore the work done through the force F(x) over a ≤ x ≤ b is,

W = ab F(x) dx


Related Discussions:- The mean value theorem for integrals

Example of union of sets, Need help, please anybody solve this: Consider...

Need help, please anybody solve this: Consider the universal set T and its subsets A, B and C underneath as: T = {a, b, c, d e, f} A = {a, d} B = {b, c, f} C = {a, c

Example on eulers method, For the initial value problem y' + 2y = 2 - e ...

For the initial value problem y' + 2y = 2 - e -4t , y(0) = 1 By using Euler's Method along with a step size of h = 0.1 to get approximate values of the solution at t = 0.1, 0

Example of uniform distribution, Q. Samantha wrote a computer program to r...

Q. Samantha wrote a computer program to randomly generate two-digit numbers between 00 and 99. Let X be the random 2 digit number generated by the computer. Find the distributio

Definition of the definite integral , Using the definition of the definite ...

Using the definition of the definite integral calculate the following.                                                             ∫ 0 2  x 2   + 1dx Solution Firstly,

Unitary method, who ,why and when discovered unitary method

who ,why and when discovered unitary method

Example of 3-d coordinate system, Example of 3-D Coordinate System Exam...

Example of 3-D Coordinate System Example: Graph x = 3 in R, R 2 and R 3 .   Solution In R we consist of a single coordinate system and thus x=3 is a point in a 1-D co

Trigonometry, Show that the radius of the circle,passing through the centre...

Show that the radius of the circle,passing through the centre of the inscribed circle of a triangle and any two of the centres of the escribed circles,is equal to the diameter of t

probability that they are both the same color, Consider two bags, A and B,...

Consider two bags, A and B, with the following contents a)    A single marble is drawn from each bag. What is the probability of getting a white marble out of Bag A and a red marb

Compare and contrast african immigrants, Compare and contrast African immig...

Compare and contrast African immigrants with our immigrant groups? How are they different? What are the implications of these differences for their adjustment to the larger society

Calculate the investment - apr 4 percent, Suppose you start saving today fo...

Suppose you start saving today for a $55,000 down payment that you plan to make on a house in 7 years,  assume that you make no deposits into the account after the initial deposit,

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd