The mean value theorem for integrals, Mathematics

Assignment Help:

The Mean Value Theorem for Integrals

If f(x) is a continuous function on [a,b] then here is a number c in [a,b] thus,

ab f(x) dx = f(c)(b -a)

Proof

Let's begin off by defining,

F(x) = ab f(t) dt

Because f(x) is continuous we get alreday from the Fundamental Theorem of Calculus, Part I that F(x) is continuous on [a,b], differentiable on (a,b) and as F′(x) = f(x).

Here, from the Mean Value Theorem we get that here is a number c such as a < c < b and that,

 F(b)- F(a) = F′(c) (b - a)

Though we know that F′(c) = f(c) and,

 F(b) = ab f(t) dt = ab f(x) dx                           F(a) = aa f(t) dt = 0

Therefore we get,

ab f(x) dx = f(c) (b -a)

Work

The work done by the force F(x) as by assuming that F(x) is continuous, over the range a ≤ x ≤ b is,

W = ab F(x) dx

Proof

Let's begin off by dividing the range a ≤ x ≤ b in n subintervals of width ?x and from all of these intervals select the points x1*, x2*,...., xn*.

Here, if n is large and as F(x) is continuous we can suppose that F(x) won't differ by much over each interval and therefore in the ith interval we can suppose that the force is approximately constant along with a value of F(x) ≈ F(x*). The work on every interval is then approximately,

Wi ≈ F(xi*) ?x

The complete work over a ≤ x ≤ b is approximately then,

2170_mean1.png

At last, if we take the limit of that as n goes to infinity we will find the exact work done. Therefore,

1887_mean2.png

It is, though, nothing more than the definition of the definite integral and therefore the work done through the force F(x) over a ≤ x ≤ b is,

W = ab F(x) dx


Related Discussions:- The mean value theorem for integrals

Linear Equations, y= -3x tell if it is linear or not. our teacher wants it ...

y= -3x tell if it is linear or not. our teacher wants it graphed or something.

Determine rank correlation coefficient , Determine Rank Correlation Coe...

Determine Rank Correlation Coefficient A group of 8 accountancy students are tested in Quantitative Techniques and Law II.  Their rankings in the two tests were as:

Aggregation and augmentation, Previously discussed how important it is to e...

Previously discussed how important it is to expose children to a variety of verbal problems involving the concept that they are trying to learn. Children attach meaning to the abst

Hasse diagram, The digraph D for a relation R on V = {1, 2, 3, 4} is shown ...

The digraph D for a relation R on V = {1, 2, 3, 4} is shown below (a) show that (V,R) is a poset. (b) Draw its Hasse diagram. (c) Give a total order that have R.

Introduction to addition and subtraction, INTRODUCTION :  When a child of ...

INTRODUCTION :  When a child of seven isn't able to solve the sum 23+9, what could the reasons be? When she is asked to subtract 9 from 16, why does she write 9 - 16 = 13 ?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd