The mean value theorem for integrals, Mathematics

Assignment Help:

The Mean Value Theorem for Integrals

If f(x) is a continuous function on [a,b] then here is a number c in [a,b] thus,

ab f(x) dx = f(c)(b -a)

Proof

Let's begin off by defining,

F(x) = ab f(t) dt

Because f(x) is continuous we get alreday from the Fundamental Theorem of Calculus, Part I that F(x) is continuous on [a,b], differentiable on (a,b) and as F′(x) = f(x).

Here, from the Mean Value Theorem we get that here is a number c such as a < c < b and that,

 F(b)- F(a) = F′(c) (b - a)

Though we know that F′(c) = f(c) and,

 F(b) = ab f(t) dt = ab f(x) dx                           F(a) = aa f(t) dt = 0

Therefore we get,

ab f(x) dx = f(c) (b -a)

Work

The work done by the force F(x) as by assuming that F(x) is continuous, over the range a ≤ x ≤ b is,

W = ab F(x) dx

Proof

Let's begin off by dividing the range a ≤ x ≤ b in n subintervals of width ?x and from all of these intervals select the points x1*, x2*,...., xn*.

Here, if n is large and as F(x) is continuous we can suppose that F(x) won't differ by much over each interval and therefore in the ith interval we can suppose that the force is approximately constant along with a value of F(x) ≈ F(x*). The work on every interval is then approximately,

Wi ≈ F(xi*) ?x

The complete work over a ≤ x ≤ b is approximately then,

2170_mean1.png

At last, if we take the limit of that as n goes to infinity we will find the exact work done. Therefore,

1887_mean2.png

It is, though, nothing more than the definition of the definite integral and therefore the work done through the force F(x) over a ≤ x ≤ b is,

W = ab F(x) dx


Related Discussions:- The mean value theorem for integrals

Relative maximum point, Relative maximum point The above graph of the ...

Relative maximum point The above graph of the function slopes upwards to the right between points C and A and thus has a positive slope among these two points. The function ha

Multiplication in decimal notations., Consider the following multiplication...

Consider the following multiplication in decimal notations: (999).(abc)=def132 ,determine the digits a,b,c,d,e,f. solution) a=8 b=6 c=8 d=8 e=6 f=7 In other words, 999 * 877 = 8

What is the minimum number of students, Question 1: What is the minimum...

Question 1: What is the minimum number of students each of whom comes from one of the 50 different states, enrolled in a university to guarantee that there are at least 100 who

System of differential equations for the population, Write down the system ...

Write down the system of differential equations for the population of both predators and prey by using the assumptions above. Solution We will start off through letting that

What is the average of his four quiz grades, Andy earned the subsequent gra...

Andy earned the subsequent grades on his four math quizzes: 97, 78, 84, and 86. What is the average of his four quiz grades? To ?nd out the average, you must add the items (97

BOUNDARY VALUE PROBLEM, Ut=Uxx+A exp(-bx) u(x,0)=A/b^2(1-exp(-bx)) u(0,t)=0...

Ut=Uxx+A exp(-bx) u(x,0)=A/b^2(1-exp(-bx)) u(0,t)=0 u(1,t)=-A/b^2 exp(-b)

Differential calculus, lim n tends to infintiy ( {x} + {2x} + {3x}..... +{n...

lim n tends to infintiy ( {x} + {2x} + {3x}..... +{nx}/ n2(to the square) )where {X} denotes the fractional part of x? Ans) all no.s are positive or 0. so limit is either positive

Prove asymptotic bounds for recursion relations, 1. (‡) Prove asymptotic b...

1. (‡) Prove asymptotic bounds for the following recursion relations. Tighter bounds will receive more marks. You may use the Master Theorem if it applies. 1. C(n) = 3C(n/2) + n

Calculus, I need an explanation of "the integral, from b to a, of the deriv...

I need an explanation of "the integral, from b to a, of the derivative of f (x). and, the integral from a to b. of the derivative of f(t) dt.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd