The mean value theorem for integrals, Mathematics

Assignment Help:

The Mean Value Theorem for Integrals

If f(x) is a continuous function on [a,b] then here is a number c in [a,b] thus,

ab f(x) dx = f(c)(b -a)

Proof

Let's begin off by defining,

F(x) = ab f(t) dt

Because f(x) is continuous we get alreday from the Fundamental Theorem of Calculus, Part I that F(x) is continuous on [a,b], differentiable on (a,b) and as F′(x) = f(x).

Here, from the Mean Value Theorem we get that here is a number c such as a < c < b and that,

 F(b)- F(a) = F′(c) (b - a)

Though we know that F′(c) = f(c) and,

 F(b) = ab f(t) dt = ab f(x) dx                           F(a) = aa f(t) dt = 0

Therefore we get,

ab f(x) dx = f(c) (b -a)

Work

The work done by the force F(x) as by assuming that F(x) is continuous, over the range a ≤ x ≤ b is,

W = ab F(x) dx

Proof

Let's begin off by dividing the range a ≤ x ≤ b in n subintervals of width ?x and from all of these intervals select the points x1*, x2*,...., xn*.

Here, if n is large and as F(x) is continuous we can suppose that F(x) won't differ by much over each interval and therefore in the ith interval we can suppose that the force is approximately constant along with a value of F(x) ≈ F(x*). The work on every interval is then approximately,

Wi ≈ F(xi*) ?x

The complete work over a ≤ x ≤ b is approximately then,

2170_mean1.png

At last, if we take the limit of that as n goes to infinity we will find the exact work done. Therefore,

1887_mean2.png

It is, though, nothing more than the definition of the definite integral and therefore the work done through the force F(x) over a ≤ x ≤ b is,

W = ab F(x) dx


Related Discussions:- The mean value theorem for integrals

Abstract Algebra, let R be a (noncommutative) ring. Given that a,b and a+b ...

let R be a (noncommutative) ring. Given that a,b and a+b ? R are all units, prove that a^(-1)+b^(-1) is a unit

Explain angle theorems, Explain Angle Theorems ? Certain angles and an...

Explain Angle Theorems ? Certain angles and angle pairs have special characteristics: Vertical angles are opposite angles formed by the intersection of two lines. Vertical ang

Can u please tell me how to solve, a triangle with side lengths in the rati...

a triangle with side lengths in the ratio 3:4:5 is inscribed in a circle of radius 3.what is the area of the triangle.

Euler equations with an auxiliarty condition - shortest path, 1. Finding th...

1. Finding the shortest path btween any two points on the surface of a sphere but use the method of the euler equations with an auxiliarty condition imposed? Question2:

In an election contested between a and b determine vote, In an election con...

In an election contested between A and B, A obtained votes equal to twice the no. of persons on the electoral roll who did not cast their votes & this later number was equal to twi

Determine fog and gof, Let g be a function from the set G = {1,2,3,...34,35...

Let g be a function from the set G = {1,2,3,...34,35,36).  Let f be a function from the set F = {1,2,3,...34,35,36}.  Set G  and F contain 36 identical elements (a - z and 0 - 9).

Properties of vector arithmetic, Properties of Vector Arithmetic If v, ...

Properties of Vector Arithmetic If v, w and u are vectors (each with the same number of components) and a and b are two numbers then we have then following properties. v →

volumes for solid of revolution, Volumes for Solid of Revolution Befo...

Volumes for Solid of Revolution Before deriving the formula for it we must probably first describe just what a solid of revolution is. To find a solid of revolution we start o

Helping children learn mathematics, Here we have focussed on how mathematic...

Here we have focussed on how mathematics learning can be made meaningful for primary school children. We have done this through examples of how children learn and how we can create

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd