The mean value theorem for integrals, Mathematics

Assignment Help:

The Mean Value Theorem for Integrals

If f(x) is a continuous function on [a,b] then here is a number c in [a,b] thus,

ab f(x) dx = f(c)(b -a)

Proof

Let's begin off by defining,

F(x) = ab f(t) dt

Because f(x) is continuous we get alreday from the Fundamental Theorem of Calculus, Part I that F(x) is continuous on [a,b], differentiable on (a,b) and as F′(x) = f(x).

Here, from the Mean Value Theorem we get that here is a number c such as a < c < b and that,

 F(b)- F(a) = F′(c) (b - a)

Though we know that F′(c) = f(c) and,

 F(b) = ab f(t) dt = ab f(x) dx                           F(a) = aa f(t) dt = 0

Therefore we get,

ab f(x) dx = f(c) (b -a)

Work

The work done by the force F(x) as by assuming that F(x) is continuous, over the range a ≤ x ≤ b is,

W = ab F(x) dx

Proof

Let's begin off by dividing the range a ≤ x ≤ b in n subintervals of width ?x and from all of these intervals select the points x1*, x2*,...., xn*.

Here, if n is large and as F(x) is continuous we can suppose that F(x) won't differ by much over each interval and therefore in the ith interval we can suppose that the force is approximately constant along with a value of F(x) ≈ F(x*). The work on every interval is then approximately,

Wi ≈ F(xi*) ?x

The complete work over a ≤ x ≤ b is approximately then,

2170_mean1.png

At last, if we take the limit of that as n goes to infinity we will find the exact work done. Therefore,

1887_mean2.png

It is, though, nothing more than the definition of the definite integral and therefore the work done through the force F(x) over a ≤ x ≤ b is,

W = ab F(x) dx


Related Discussions:- The mean value theorem for integrals

General solution to a differential equation, The general solution to a diff...

The general solution to a differential equation is the most common form which the solution can take and does not take any initial conditions in account. Illustration 5: y(t) =

Riddles, I am a number yell my identity subtract 20 from me and add 30 make...

I am a number yell my identity subtract 20 from me and add 30 make the total twice to reach century you still need eight

Matrices, how solve the inverse matrices using the matlab?

how solve the inverse matrices using the matlab?

Area under curve, Write a program to find the area under the curve y = f(x)...

Write a program to find the area under the curve y = f(x) between x = a and x = b, integrate y = f(x) between the limits of a and b. The area under a curve between two points can b

Calculate the profit of company, Company A and Company B have spent a lot o...

Company A and Company B have spent a lot of money on research to develop a cure for the common cold. Winter is approaching and there is certainly going to be a lot of demand for th

Determine the function f ( x ) , Determine the function f ( x ) .       ...

Determine the function f ( x ) .             f ′ ( x )= 4x 3 - 9 + 2 sin x + 7e x , f (0) = 15 Solution The first step is to integrate to fine out the most general pos

Fourier series - partial differential equations, Fourier series - Partial D...

Fourier series - Partial Differential Equations One more application of series arises in the study of Partial Differential Equations.  One of the more generally employed method

Commercial, The C.P. of 20 articles is same as theS.P. of x articles.Articl...

The C.P. of 20 articles is same as theS.P. of x articles.Article profit is 25%.Find x

Bernoulli differential equations, In this case we are going to consider dif...

In this case we are going to consider differential equations in the form, y ′ +  p   ( x ) y =  q   ( x ) y n Here p(x) and q(x) are continuous functions in the

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd