The mean value theorem for integrals, Mathematics

Assignment Help:

The Mean Value Theorem for Integrals

If f(x) is a continuous function on [a,b] then here is a number c in [a,b] thus,

ab f(x) dx = f(c)(b -a)

Proof

Let's begin off by defining,

F(x) = ab f(t) dt

Because f(x) is continuous we get alreday from the Fundamental Theorem of Calculus, Part I that F(x) is continuous on [a,b], differentiable on (a,b) and as F′(x) = f(x).

Here, from the Mean Value Theorem we get that here is a number c such as a < c < b and that,

 F(b)- F(a) = F′(c) (b - a)

Though we know that F′(c) = f(c) and,

 F(b) = ab f(t) dt = ab f(x) dx                           F(a) = aa f(t) dt = 0

Therefore we get,

ab f(x) dx = f(c) (b -a)

Work

The work done by the force F(x) as by assuming that F(x) is continuous, over the range a ≤ x ≤ b is,

W = ab F(x) dx

Proof

Let's begin off by dividing the range a ≤ x ≤ b in n subintervals of width ?x and from all of these intervals select the points x1*, x2*,...., xn*.

Here, if n is large and as F(x) is continuous we can suppose that F(x) won't differ by much over each interval and therefore in the ith interval we can suppose that the force is approximately constant along with a value of F(x) ≈ F(x*). The work on every interval is then approximately,

Wi ≈ F(xi*) ?x

The complete work over a ≤ x ≤ b is approximately then,

2170_mean1.png

At last, if we take the limit of that as n goes to infinity we will find the exact work done. Therefore,

1887_mean2.png

It is, though, nothing more than the definition of the definite integral and therefore the work done through the force F(x) over a ≤ x ≤ b is,

W = ab F(x) dx


Related Discussions:- The mean value theorem for integrals

Calculus, I need help with my calculus work

I need help with my calculus work

Equations with finding principals, I need help solving principal equations ...

I need help solving principal equations where interest,rate,and time are given.

Perimeter of trinagle, what is the perimeter of a triangele with the sides ...

what is the perimeter of a triangele with the sides of 32 in /22 in/20 in/

How to multiplying rational expressions, how to Multiplying Rational Expres...

how to Multiplying Rational Expressions ? To multiply fractions, or rational expressions, you must multiply the numerators and then multiply the denominators. Here's how it is

Find the evaluation of angle, In parallelogram ABCD, ∠A = 5x + 2 and ∠C = 6...

In parallelogram ABCD, ∠A = 5x + 2 and ∠C = 6x - 4. Find the evaluation of ∠A. a. 32° b. 6° c. 84.7° d. 44° a. Opposite angles of a parallelogram are same in measu

Proof for absolute convergence - sequences and series, Proof for Absolute C...

Proof for Absolute Convergence Very first notice that |a n | is either a n or it is - a n depending upon its sign.  The meaning of this is that we can then say, 0 a n +

factorial, why zero factorial is equal to on

why zero factorial is equal to one

Derive a boolean first-order query, Consider a database whose universe is a...

Consider a database whose universe is a finite set of vertices V and whose unique relation .E is binary and encodes the edges of an undirected (resp., directed) graph G: (V, E). Ea

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd