The mean value theorem for integrals, Mathematics

Assignment Help:

The Mean Value Theorem for Integrals

If f(x) is a continuous function on [a,b] then here is a number c in [a,b] thus,

ab f(x) dx = f(c)(b -a)

Proof

Let's begin off by defining,

F(x) = ab f(t) dt

Because f(x) is continuous we get alreday from the Fundamental Theorem of Calculus, Part I that F(x) is continuous on [a,b], differentiable on (a,b) and as F′(x) = f(x).

Here, from the Mean Value Theorem we get that here is a number c such as a < c < b and that,

 F(b)- F(a) = F′(c) (b - a)

Though we know that F′(c) = f(c) and,

 F(b) = ab f(t) dt = ab f(x) dx                           F(a) = aa f(t) dt = 0

Therefore we get,

ab f(x) dx = f(c) (b -a)

Work

The work done by the force F(x) as by assuming that F(x) is continuous, over the range a ≤ x ≤ b is,

W = ab F(x) dx

Proof

Let's begin off by dividing the range a ≤ x ≤ b in n subintervals of width ?x and from all of these intervals select the points x1*, x2*,...., xn*.

Here, if n is large and as F(x) is continuous we can suppose that F(x) won't differ by much over each interval and therefore in the ith interval we can suppose that the force is approximately constant along with a value of F(x) ≈ F(x*). The work on every interval is then approximately,

Wi ≈ F(xi*) ?x

The complete work over a ≤ x ≤ b is approximately then,

2170_mean1.png

At last, if we take the limit of that as n goes to infinity we will find the exact work done. Therefore,

1887_mean2.png

It is, though, nothing more than the definition of the definite integral and therefore the work done through the force F(x) over a ≤ x ≤ b is,

W = ab F(x) dx


Related Discussions:- The mean value theorem for integrals

Developing estimation skills in maths, DEVELOPING ESTIMATION SKILLS :  A s...

DEVELOPING ESTIMATION SKILLS :  A study was done with some Class 3 and Class 4 children of five village schools to gauge how well they had understood the standard algorithms. The

Uniform distribution over the interval, High temperatures in certain city i...

High temperatures in certain city in the month of August follow uniform distribution over the interval 60-85 F. What is probability that a randomly selected August day has a Temper

Spherical coordinates - three dimensional space, Spherical Coordinates - Th...

Spherical Coordinates - Three Dimensional Space In this part we will introduce spherical coordinates. Spherical coordinates which can take a little getting employed to.  It's

Trigonometry, trigonometric ratios of sum and difference of two angles

trigonometric ratios of sum and difference of two angles

Managment Science, Classify models based on the degree of their abstraction...

Classify models based on the degree of their abstraction, and provide some examples of such models.

Define natural numbers, Q. Define natural numbers Ans. The natural...

Q. Define natural numbers Ans. The natural numbers (also called the counting numbers) are the numbers that you "naturally" use for counting: 1,2,3,4,... The set of n

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd