The mean value theorem for integrals, Mathematics

Assignment Help:

The Mean Value Theorem for Integrals

If f(x) is a continuous function on [a,b] then here is a number c in [a,b] thus,

ab f(x) dx = f(c)(b -a)

Proof

Let's begin off by defining,

F(x) = ab f(t) dt

Because f(x) is continuous we get alreday from the Fundamental Theorem of Calculus, Part I that F(x) is continuous on [a,b], differentiable on (a,b) and as F′(x) = f(x).

Here, from the Mean Value Theorem we get that here is a number c such as a < c < b and that,

 F(b)- F(a) = F′(c) (b - a)

Though we know that F′(c) = f(c) and,

 F(b) = ab f(t) dt = ab f(x) dx                           F(a) = aa f(t) dt = 0

Therefore we get,

ab f(x) dx = f(c) (b -a)

Work

The work done by the force F(x) as by assuming that F(x) is continuous, over the range a ≤ x ≤ b is,

W = ab F(x) dx

Proof

Let's begin off by dividing the range a ≤ x ≤ b in n subintervals of width ?x and from all of these intervals select the points x1*, x2*,...., xn*.

Here, if n is large and as F(x) is continuous we can suppose that F(x) won't differ by much over each interval and therefore in the ith interval we can suppose that the force is approximately constant along with a value of F(x) ≈ F(x*). The work on every interval is then approximately,

Wi ≈ F(xi*) ?x

The complete work over a ≤ x ≤ b is approximately then,

2170_mean1.png

At last, if we take the limit of that as n goes to infinity we will find the exact work done. Therefore,

1887_mean2.png

It is, though, nothing more than the definition of the definite integral and therefore the work done through the force F(x) over a ≤ x ≤ b is,

W = ab F(x) dx


Related Discussions:- The mean value theorem for integrals

Numerical analysis and computer techniques, write a fortan programme to gen...

write a fortan programme to generate prime number between 1 to 100

Series, find the series of the first twenty terms

find the series of the first twenty terms

Shares and dividend, a man in rested rupee 800 is buying rupee 5 shares and...

a man in rested rupee 800 is buying rupee 5 shares and then are selling at premium of rupee 1.15. He sells all the shares.find profit

quantitative, how to find group mean, mode and media

how to find group mean, mode and median

Naive regular perturbation of the form, Consider the equation e x 3 + ...

Consider the equation e x 3 + x 2 - x - 6 = 0, e > 0 (1) 1. Apply a naive regular perturbation of the form do derive a three-term approximation to the solutions

.fractions, what is the difference between North America''s part of the tot...

what is the difference between North America''s part of the total population and Africa''s part

Permatuation and combination problem, 4 boys and 4 girls are to seated in a...

4 boys and 4 girls are to seated in arow i)no. of girls sit together ii)not all girls sit together iii)boys and girls are altenate to each other iv)if a particular boy and g

Properties of definite integral, Properties 1.  ∫ b a f ( x ) dx = -∫ ...

Properties 1.  ∫ b a f ( x ) dx = -∫ b a f ( x ) dx .  We can interchange the limits on any definite integral, all that we have to do is tack a minus sign onto the integral

General approach of exponential functions, General approach of Exponential ...

General approach of Exponential Functions : Before getting to this function let's take a much more general approach to things. Let's begin with b = 0 , b ≠ 1. Then an exponential f

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd