The mean value theorem for integrals, Mathematics

Assignment Help:

The Mean Value Theorem for Integrals

If f(x) is a continuous function on [a,b] then here is a number c in [a,b] thus,

ab f(x) dx = f(c)(b -a)

Proof

Let's begin off by defining,

F(x) = ab f(t) dt

Because f(x) is continuous we get alreday from the Fundamental Theorem of Calculus, Part I that F(x) is continuous on [a,b], differentiable on (a,b) and as F′(x) = f(x).

Here, from the Mean Value Theorem we get that here is a number c such as a < c < b and that,

 F(b)- F(a) = F′(c) (b - a)

Though we know that F′(c) = f(c) and,

 F(b) = ab f(t) dt = ab f(x) dx                           F(a) = aa f(t) dt = 0

Therefore we get,

ab f(x) dx = f(c) (b -a)

Work

The work done by the force F(x) as by assuming that F(x) is continuous, over the range a ≤ x ≤ b is,

W = ab F(x) dx

Proof

Let's begin off by dividing the range a ≤ x ≤ b in n subintervals of width ?x and from all of these intervals select the points x1*, x2*,...., xn*.

Here, if n is large and as F(x) is continuous we can suppose that F(x) won't differ by much over each interval and therefore in the ith interval we can suppose that the force is approximately constant along with a value of F(x) ≈ F(x*). The work on every interval is then approximately,

Wi ≈ F(xi*) ?x

The complete work over a ≤ x ≤ b is approximately then,

2170_mean1.png

At last, if we take the limit of that as n goes to infinity we will find the exact work done. Therefore,

1887_mean2.png

It is, though, nothing more than the definition of the definite integral and therefore the work done through the force F(x) over a ≤ x ≤ b is,

W = ab F(x) dx


Related Discussions:- The mean value theorem for integrals

Help, sin(x)+cos(x)

sin(x)+cos(x)

Algebra, 25 algebraic equations that equal 36

25 algebraic equations that equal 36

About algebra, how do i compute an algebra number

how do i compute an algebra number

Show that af+bd+ce=ae+bf+cd= 1/2 , In figure, the incircle of triangle ABC...

In figure, the incircle of triangle ABC touches the sides BC, CA, and AB at D, E, and F respectively. Show that AF+BD+CE=AE+BF+CD= 1/2   (perimeter of triangle ABC), Ans:

Find out the greater of two consecutive positive is 143, Find out the great...

Find out the greater of two consecutive positive odd integers whose product is 143. Let x = the lesser odd integer and let x + 2 = the greater odd integer. Because product is a

Calculate the instantaneous rate of change of the volume, Assume that the a...

Assume that the amount of air in a balloon after t hours is specified by                                             V (t ) = t 3 - 6t 2 + 35 Calculate the instantaneous

Alternate notation of derivative, Alternate Notation : Next we have to dis...

Alternate Notation : Next we have to discuss some alternate notation for the derivative. The typical derivative notation is the "prime" notation. Though, there is another notation

Developing pre-number concepts, DEVELOPING PRE-NUMBER CONCEPTS :  Previous...

DEVELOPING PRE-NUMBER CONCEPTS :  Previously you have read how children acquire concepts. You know that, for children to grasp a concept, they must be given several opportunities

Conditional probability: dependent events, We can define the conditional pr...

We can define the conditional probability of event A, given that event B occurred when both A and B are dependent events, as the ratio of the number of elements common in both A an

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd