The mean value theorem for integrals, Mathematics

Assignment Help:

The Mean Value Theorem for Integrals

If f(x) is a continuous function on [a,b] then here is a number c in [a,b] thus,

ab f(x) dx = f(c)(b -a)

Proof

Let's begin off by defining,

F(x) = ab f(t) dt

Because f(x) is continuous we get alreday from the Fundamental Theorem of Calculus, Part I that F(x) is continuous on [a,b], differentiable on (a,b) and as F′(x) = f(x).

Here, from the Mean Value Theorem we get that here is a number c such as a < c < b and that,

 F(b)- F(a) = F′(c) (b - a)

Though we know that F′(c) = f(c) and,

 F(b) = ab f(t) dt = ab f(x) dx                           F(a) = aa f(t) dt = 0

Therefore we get,

ab f(x) dx = f(c) (b -a)

Work

The work done by the force F(x) as by assuming that F(x) is continuous, over the range a ≤ x ≤ b is,

W = ab F(x) dx

Proof

Let's begin off by dividing the range a ≤ x ≤ b in n subintervals of width ?x and from all of these intervals select the points x1*, x2*,...., xn*.

Here, if n is large and as F(x) is continuous we can suppose that F(x) won't differ by much over each interval and therefore in the ith interval we can suppose that the force is approximately constant along with a value of F(x) ≈ F(x*). The work on every interval is then approximately,

Wi ≈ F(xi*) ?x

The complete work over a ≤ x ≤ b is approximately then,

2170_mean1.png

At last, if we take the limit of that as n goes to infinity we will find the exact work done. Therefore,

1887_mean2.png

It is, though, nothing more than the definition of the definite integral and therefore the work done through the force F(x) over a ≤ x ≤ b is,

W = ab F(x) dx


Related Discussions:- The mean value theorem for integrals

Rebecca is 12.5% taller than debbie how tall is rebecca, Rebecca is 12.5% t...

Rebecca is 12.5% taller than Debbie. Debbie is 64 inches tall. How tall is Rebecca? Because Rebecca is 12.5% taller than Debbie, she is 112.5% of Debbie's height (100% + 12.5%

Example of set representation, Can anybody suggest me any example of Set Re...

Can anybody suggest me any example of Set Representation?

Obligatory application and interpretation problem, Obligatory application/i...

Obligatory application/interpretation problem : Next, we need to do our obligatory application/interpretation problem so we don't forget about them. Example : Assume that the

Reason for why limits not existing, Reason for why limits not existing : I...

Reason for why limits not existing : In the previous section we saw two limits that did not.  We saw that did not exist since the function did not settle down to a sing

Inverse functions, Inverse Functions : In the last instance from the pr...

Inverse Functions : In the last instance from the previous section we looked at the two functions   f ( x ) = 3x - 2 and g ( x ) = x /3+ 2/3 and saw that ( f o g ) ( x )

Pair of straight line, show that one of the straight lines given by ax2+2hx...

show that one of the straight lines given by ax2+2hxy+by2=o bisect an angle between the co ordinate axes, if (a+b)2=4h2

Linear programming , use the simplex method to solve the following lp probl...

use the simplex method to solve the following lp problem. max z = 107x1 + x2 + 2x3 subject to 14x1 + x2 - 6x3 + 3x4 = 7 16x1 + x2 - 6x3 3x1 - x2 - x3 x1,x2,x3,x4 > = 0

Concept, uses of maths concept

uses of maths concept

Change of base of logarithms, Change of base: The final topic that we have...

Change of base: The final topic that we have to look at in this section is the change of base formula for logarithms. The change of base formula is,

Distinct roots, There actually isn't a whole lot to do throughout this case...

There actually isn't a whole lot to do throughout this case.  We'll find two solutions which will form a basic set of solutions and therefore our general solution will be as,

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd