The mean value theorem for integrals, Mathematics

Assignment Help:

The Mean Value Theorem for Integrals

If f(x) is a continuous function on [a,b] then here is a number c in [a,b] thus,

ab f(x) dx = f(c)(b -a)

Proof

Let's begin off by defining,

F(x) = ab f(t) dt

Because f(x) is continuous we get alreday from the Fundamental Theorem of Calculus, Part I that F(x) is continuous on [a,b], differentiable on (a,b) and as F′(x) = f(x).

Here, from the Mean Value Theorem we get that here is a number c such as a < c < b and that,

 F(b)- F(a) = F′(c) (b - a)

Though we know that F′(c) = f(c) and,

 F(b) = ab f(t) dt = ab f(x) dx                           F(a) = aa f(t) dt = 0

Therefore we get,

ab f(x) dx = f(c) (b -a)

Work

The work done by the force F(x) as by assuming that F(x) is continuous, over the range a ≤ x ≤ b is,

W = ab F(x) dx

Proof

Let's begin off by dividing the range a ≤ x ≤ b in n subintervals of width ?x and from all of these intervals select the points x1*, x2*,...., xn*.

Here, if n is large and as F(x) is continuous we can suppose that F(x) won't differ by much over each interval and therefore in the ith interval we can suppose that the force is approximately constant along with a value of F(x) ≈ F(x*). The work on every interval is then approximately,

Wi ≈ F(xi*) ?x

The complete work over a ≤ x ≤ b is approximately then,

2170_mean1.png

At last, if we take the limit of that as n goes to infinity we will find the exact work done. Therefore,

1887_mean2.png

It is, though, nothing more than the definition of the definite integral and therefore the work done through the force F(x) over a ≤ x ≤ b is,

W = ab F(x) dx


Related Discussions:- The mean value theorem for integrals

To find out the perimeter of a triangular give formula, To find out the per...

To find out the perimeter of a triangular region, what formula would you use? The perimeter of a triangle is length of surface a plus length of side b plus length of side c.

Mode, What is the median for this problem (55+75+85+100+100)

What is the median for this problem (55+75+85+100+100)

Explain the common forms of linear equations, Explain the Common Forms of L...

Explain the Common Forms of Linear Equations ? An equation whose graph is a line is called a linear equation. Here are listed some special forms of linear equations. Why should

Find out the greater of two consecutive positive is 143, Find out the great...

Find out the greater of two consecutive positive odd integers whose product is 143. Let x = the lesser odd integer and let x + 2 = the greater odd integer. Because product is a

Definite integral, Definite Integral : Given a function f ( x ) which is c...

Definite Integral : Given a function f ( x ) which is continuous on the interval [a,b] we divide the interval in n subintervals of equivalent width, Δx , and from each interval se

Outer automorphism, (a) An unordered pair fm; ng with 1 ≤ m ≠ n ≤ 6 is ca...

(a) An unordered pair fm; ng with 1 ≤ m ≠ n ≤ 6 is called a duad. List the 15 duads. (b) There are 15 ways to partition {1, ......, 6 } into 3 duads, such as { {1; 2}, {3, 4},

What is plotting points, What is Plotting Points ? How would you go abo...

What is Plotting Points ? How would you go about drawing the graph of y = x2 ? One way to do it is by plotting points. (Your graphing calculator uses this method.) This is

Patrice has worked a certain how many hours has she worked, Patrice has wor...

Patrice has worked a certain amount of hours so far this week. Tomorrow she will work four more hours to finish out the week along with a total of 10 hours. How many hours has she

Evaluate the volume and surface area of a rectangular solid, Evaluate the v...

Evaluate the volume and surface area of a rectangular solid: Calculate the volume & surface area of a rectangular solid along with a =   3", b = 4", & c = 5".  Solution:

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd