The mean value theorem for integrals, Mathematics

Assignment Help:

The Mean Value Theorem for Integrals

If f(x) is a continuous function on [a,b] then here is a number c in [a,b] thus,

ab f(x) dx = f(c)(b -a)

Proof

Let's begin off by defining,

F(x) = ab f(t) dt

Because f(x) is continuous we get alreday from the Fundamental Theorem of Calculus, Part I that F(x) is continuous on [a,b], differentiable on (a,b) and as F′(x) = f(x).

Here, from the Mean Value Theorem we get that here is a number c such as a < c < b and that,

 F(b)- F(a) = F′(c) (b - a)

Though we know that F′(c) = f(c) and,

 F(b) = ab f(t) dt = ab f(x) dx                           F(a) = aa f(t) dt = 0

Therefore we get,

ab f(x) dx = f(c) (b -a)

Work

The work done by the force F(x) as by assuming that F(x) is continuous, over the range a ≤ x ≤ b is,

W = ab F(x) dx

Proof

Let's begin off by dividing the range a ≤ x ≤ b in n subintervals of width ?x and from all of these intervals select the points x1*, x2*,...., xn*.

Here, if n is large and as F(x) is continuous we can suppose that F(x) won't differ by much over each interval and therefore in the ith interval we can suppose that the force is approximately constant along with a value of F(x) ≈ F(x*). The work on every interval is then approximately,

Wi ≈ F(xi*) ?x

The complete work over a ≤ x ≤ b is approximately then,

2170_mean1.png

At last, if we take the limit of that as n goes to infinity we will find the exact work done. Therefore,

1887_mean2.png

It is, though, nothing more than the definition of the definite integral and therefore the work done through the force F(x) over a ≤ x ≤ b is,

W = ab F(x) dx


Related Discussions:- The mean value theorem for integrals

A jeweler has bars of 18-carat gold , A jeweler has bars of 18-carat gold a...

A jeweler has bars of 18-carat gold and 12-carat gold. How much of every melted together to obtain a bar of 16-carat gold, weighing 120 gm ? It is given that pure gold is 24 carat.

Pemdas, 15(4*4*4*4*+5*5*5)+(13*13*13+3*3*3)

15(4*4*4*4*+5*5*5)+(13*13*13+3*3*3)

Steps for integration strategy - integration techniques, Steps for Integrat...

Steps for Integration Strategy 1. Simplify the integrand, if possible This step is vital in the integration process. Several integrals can be taken from impossible or ve

20 MARK QUESTION, Let E; F be 2 points in the plane, EF has length 1, and l...

Let E; F be 2 points in the plane, EF has length 1, and let N be a continuous curve from E to F. A chord of N is a straight line joining 2 points on N. Prove if 0 Prove that N ha

Draw a common graph y = sin ( x ), Graph y = sin ( x ) Solution : As a...

Graph y = sin ( x ) Solution : As along the first problem in this section there actually isn't a lot to do other than graph it.  Following is the graph. From this grap

Math, could you help me get bater at math

could you help me get bater at math

Unipolar and bipolar boolean inputs, A 4-input Neuron has weights (1,-1,  0...

A 4-input Neuron has weights (1,-1,  0,  0.5.Calculate the network output when the following input vectors are applied. For calculation assume: a. f(net) = unipolar bina

Domain and range of a function , Domain and range of a functio:  One of th...

Domain and range of a functio:  One of the more significant ideas regarding functions is that of the domain and range of a function. In simplest world the domain of function is th

Permission for xii class, Is there any class in expertsmind for second year...

Is there any class in expertsmind for second year english.?

Geometry, the segments shown could form a triangle

the segments shown could form a triangle

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd