The mean value theorem for integrals, Mathematics

Assignment Help:

The Mean Value Theorem for Integrals

If f(x) is a continuous function on [a,b] then here is a number c in [a,b] thus,

ab f(x) dx = f(c)(b -a)

Proof

Let's begin off by defining,

F(x) = ab f(t) dt

Because f(x) is continuous we get alreday from the Fundamental Theorem of Calculus, Part I that F(x) is continuous on [a,b], differentiable on (a,b) and as F′(x) = f(x).

Here, from the Mean Value Theorem we get that here is a number c such as a < c < b and that,

 F(b)- F(a) = F′(c) (b - a)

Though we know that F′(c) = f(c) and,

 F(b) = ab f(t) dt = ab f(x) dx                           F(a) = aa f(t) dt = 0

Therefore we get,

ab f(x) dx = f(c) (b -a)

Work

The work done by the force F(x) as by assuming that F(x) is continuous, over the range a ≤ x ≤ b is,

W = ab F(x) dx

Proof

Let's begin off by dividing the range a ≤ x ≤ b in n subintervals of width ?x and from all of these intervals select the points x1*, x2*,...., xn*.

Here, if n is large and as F(x) is continuous we can suppose that F(x) won't differ by much over each interval and therefore in the ith interval we can suppose that the force is approximately constant along with a value of F(x) ≈ F(x*). The work on every interval is then approximately,

Wi ≈ F(xi*) ?x

The complete work over a ≤ x ≤ b is approximately then,

2170_mean1.png

At last, if we take the limit of that as n goes to infinity we will find the exact work done. Therefore,

1887_mean2.png

It is, though, nothing more than the definition of the definite integral and therefore the work done through the force F(x) over a ≤ x ≤ b is,

W = ab F(x) dx


Related Discussions:- The mean value theorem for integrals

Applications of percentage, rajan bought an armchair for rs.2200 and sold i...

rajan bought an armchair for rs.2200 and sold it for rs.2420.find his profit per cent.

Determine the numbers of sides in regular polygon, If each interior angle o...

If each interior angle of a regular polygon has a calculated as of 144 degrees, Determine the numbers of sides does it have? a. 8 b. 9 c. 10 d. 11   c. The measur

External division of section formula, give me the derivation of external di...

give me the derivation of external division of sectional formula using vectors

Alternate notation of derivative, Alternate Notation : Next we have to dis...

Alternate Notation : Next we have to discuss some alternate notation for the derivative. The typical derivative notation is the "prime" notation. Though, there is another notation

How many hours will it take for them to be 822 miles apart, Two trains leav...

Two trains leave the same city at the same time, one going east and the other going west. If one train is traveling at 65 mph and the other at 72 mph, how many hours will it take f

Trignomatry, what is the trignomatry ratio

what is the trignomatry ratio

find the present age, 5 years however, a man's age will be 3times his son'...

5 years however, a man's age will be 3times his son's age and 5 years ago, he was 7 times as old as his son.    Find their present ages.

Commercial maths, if 500kg of food lasts 40 days for 30 men.how many men wi...

if 500kg of food lasts 40 days for 30 men.how many men will consume 675kg of food in 45 days.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd