The mean value theorem for integrals, Mathematics

Assignment Help:

The Mean Value Theorem for Integrals

If f(x) is a continuous function on [a,b] then here is a number c in [a,b] thus,

ab f(x) dx = f(c)(b -a)

Proof

Let's begin off by defining,

F(x) = ab f(t) dt

Because f(x) is continuous we get alreday from the Fundamental Theorem of Calculus, Part I that F(x) is continuous on [a,b], differentiable on (a,b) and as F′(x) = f(x).

Here, from the Mean Value Theorem we get that here is a number c such as a < c < b and that,

 F(b)- F(a) = F′(c) (b - a)

Though we know that F′(c) = f(c) and,

 F(b) = ab f(t) dt = ab f(x) dx                           F(a) = aa f(t) dt = 0

Therefore we get,

ab f(x) dx = f(c) (b -a)

Work

The work done by the force F(x) as by assuming that F(x) is continuous, over the range a ≤ x ≤ b is,

W = ab F(x) dx

Proof

Let's begin off by dividing the range a ≤ x ≤ b in n subintervals of width ?x and from all of these intervals select the points x1*, x2*,...., xn*.

Here, if n is large and as F(x) is continuous we can suppose that F(x) won't differ by much over each interval and therefore in the ith interval we can suppose that the force is approximately constant along with a value of F(x) ≈ F(x*). The work on every interval is then approximately,

Wi ≈ F(xi*) ?x

The complete work over a ≤ x ≤ b is approximately then,

2170_mean1.png

At last, if we take the limit of that as n goes to infinity we will find the exact work done. Therefore,

1887_mean2.png

It is, though, nothing more than the definition of the definite integral and therefore the work done through the force F(x) over a ≤ x ≤ b is,

W = ab F(x) dx


Related Discussions:- The mean value theorem for integrals

What is the ratio of the areas of sectors , What is the ratio of the areas ...

What is the ratio of the areas of sectors I and II ?                               (Ans:4:5) Ans:    Ratio will be 120/360  Π r 2 : 150/360  Π r 2 4/12  : 5/12  =

How to find x?, How can I solve x in a circle? For example.. m

How can I solve x in a circle? For example.. m

How to change improper fractions to mixed/ proper fractions, how do you cha...

how do you change an improper fraction to a mixed number or whole or proper

Emi, calculation of emi %

calculation of emi %

Mathematical concepts and ideas , These experiences should be related to th...

These experiences should be related to the mathematical concepts and ideas that we teach them. Only then will these ideas appear relevant to the children, and be absorbed by them

Marketing orientation, what marketing orientation is kelloggs influenced by...

what marketing orientation is kelloggs influenced by?why do you think kelloggs use this approach?

Evaluate the log function, Evaluate the log function: Calculate 3log 1...

Evaluate the log function: Calculate 3log 10 2. Solution: Rule 3.             log  (A n ) = nlog b   A 3log 10  2 = log 10 (2 3 ) = log 10   8 = 0.903

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd