The mean value theorem for integrals, Mathematics

Assignment Help:

The Mean Value Theorem for Integrals

If f(x) is a continuous function on [a,b] then here is a number c in [a,b] thus,

ab f(x) dx = f(c)(b -a)

Proof

Let's begin off by defining,

F(x) = ab f(t) dt

Because f(x) is continuous we get alreday from the Fundamental Theorem of Calculus, Part I that F(x) is continuous on [a,b], differentiable on (a,b) and as F′(x) = f(x).

Here, from the Mean Value Theorem we get that here is a number c such as a < c < b and that,

 F(b)- F(a) = F′(c) (b - a)

Though we know that F′(c) = f(c) and,

 F(b) = ab f(t) dt = ab f(x) dx                           F(a) = aa f(t) dt = 0

Therefore we get,

ab f(x) dx = f(c) (b -a)

Work

The work done by the force F(x) as by assuming that F(x) is continuous, over the range a ≤ x ≤ b is,

W = ab F(x) dx

Proof

Let's begin off by dividing the range a ≤ x ≤ b in n subintervals of width ?x and from all of these intervals select the points x1*, x2*,...., xn*.

Here, if n is large and as F(x) is continuous we can suppose that F(x) won't differ by much over each interval and therefore in the ith interval we can suppose that the force is approximately constant along with a value of F(x) ≈ F(x*). The work on every interval is then approximately,

Wi ≈ F(xi*) ?x

The complete work over a ≤ x ≤ b is approximately then,

2170_mean1.png

At last, if we take the limit of that as n goes to infinity we will find the exact work done. Therefore,

1887_mean2.png

It is, though, nothing more than the definition of the definite integral and therefore the work done through the force F(x) over a ≤ x ≤ b is,

W = ab F(x) dx


Related Discussions:- The mean value theorem for integrals

Geometry, find h in the parallelogram

find h in the parallelogram

Extreme value theorem, Extreme Value Theorem : Assume that f ( x ) is cont...

Extreme Value Theorem : Assume that f ( x ) is continuous on the interval [a,b] then there are two numbers a ≤ c, d ≤ b so that f (c ) is an absolute maximum for the function and

3/8:5/9, how do I change this ratio to a fraction

how do I change this ratio to a fraction

Generate a 30-ounce solution which was 28% acid, A chemist mixed a solution...

A chemist mixed a solution which was 34% acid with another solution that was 18% acid to generate a 30-ounce solution which was 28% acid. How much of the 34% acid solution did he u

Inverse cosine, Inverse Cosine : Now see at inverse cosine.  Following is ...

Inverse Cosine : Now see at inverse cosine.  Following is the definition for the inverse cosine.                         y = cos -1 x       ⇔ cos y = x                   for

Reflection matrix, how do i solve reflection matrix just looking at the num...

how do i solve reflection matrix just looking at the numbers in a matrix

Cross product - vector, Cross Product In this last section we will loo...

Cross Product In this last section we will look at the cross product of two vectors.  We must note that the cross product needs both of the vectors to be three dimensional (3D

Determine differential equation from direction field, Thus, just why do we ...

Thus, just why do we care regarding direction fields? Two nice pieces of information are there which can be readily determined from the direction field for a differential equation.

Evaluate relate rate in shape of a cone a tank , In the shape of a cone a t...

In the shape of a cone a tank of water is leaking water at a constant rate of 2 ft 3 /hour .  The base radius of the tank is equal to 5 ft and the height of the tank is 14 ft.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd