The finite element method fem, engineering, Other Engineering

Assignment Help:
The finite element method
The finite element method (FEM), sometimes referred to as finite element analysis (FEA), is a computational technique used to obtain approximate solutions of boundary value problems in engineering. The finite element method owes its origins to three different fields-Mathematics, Physics, and Engineering. The method was originally developed to study thestresses in complex air-frame structures (Clough 1960) and was later extended to the general field of continuum mechanics (Zienkiewicz and Cheung 1965). There have been many articles on the history of finite elements written by numerous authors with conflicting opinions on the origins of the technique (Gupta and Meek 1996; Oden 1996; Zienkiewicz 1996). The finite element method is receiving considerable attention in engineering education and in industry because of its diversity and flexibility as an analysis tool.. Greenstadt (1959) outlined a discretization approach involving “cells” instead of points. This approach contained many of the essential and fundamental ideas that serve as the mathematical basis for the finite element method. Research has shown that this method is appropriate and of negligible error in solving problems associated with engineering systems.
The finite element method considers a complicated domain to be subdivided into a series of smaller regions in which the differential equations are approximately solved. By assembling the set of equations for each region, the behaviour over the entire problem domain is determined. Each region is referred to as an element and the process of subdividing a domain into a finite number of elements is referred to as discretization. Elements are connected at specific points called nodes and the assembly process requires that the solution be continuous along common boundaries of adjacent elements.
Simple stated by Huebner and Thornton (1982), the finite element analysis can be obtained by:
Discretizing the continuum: by replacing it by a series of simple, interconnected elements where the field properties will be relatively easy to compute.
Select the interpolation function: that shows the variation of the field variable across the element domain.
Find the element properties: by substituting discrete values for the field variable at the nodes. This leads us to a system of equations.
Assemble the nodes: by combining each element approximation of the field variable to form a piecewise approximation of the behaviour over the entire solution domain.
Apply the boundary conditions that indicate the uniqueness of the solution.
Solve the system of equations using numerical techniques at each node.
Make additional computations, visualization and optional analysis using computer software.

Related Discussions:- The finite element method fem, engineering

Manufacturing technology, explain any two finishing processes in detail wit...

explain any two finishing processes in detail with neat diagram

Create and plot signals in ccs , I want to plot x1=4exp(t/4) x2=sin(2Pift+...

I want to plot x1=4exp(t/4) x2=sin(2Pift+pi/2) and x3=x1x2 in CcS

Gas turbine fuel properties - aircraft design, Gas turbine fuel properties ...

Gas turbine fuel properties and specification In the earliest days of the gas turbine engine, kerosene was regarded as the most suitable fuel. It commended itself on the grounds

Medical Optics, what are wavefronts and how are they useful in the field o...

what are wavefronts and how are they useful in the field of optics and medicine?

How does or gate work, Expertsmind.com  brings you unique solution in Elec...

Expertsmind.com  brings you unique solution in Electrical Engineering   How does OR gate work? An 'OR' gate is like two or more switches positioned in parallel.

Electro-mechanical fuel control, Electro-mechanical fuel control: The s...

Electro-mechanical fuel control: The start fuel valve and ignition are energised as soon as rotation (3%) is sensed by an Electronic Sequence Unit (ESU). At 14% and with risin

Qualitative risk assessment - fire protection engineering, Qualitative risk...

Qualitative risk assessment - fire protection engineering: NFPA 551 discusses the differences between qualitative risk assessment and quantitative risk assessment. Qualitat

Constant speeding propeller, Constant speeding propeller: The definitio...

Constant speeding propeller: The definition of a Constant Speeding propeller is 'A propeller, the pitch setting of which varies automatically to maintain a preselected constant

Wireless sensor networks, can we construct a body area sensor network in ma...

can we construct a body area sensor network in matlab as in ns-2.

Open innovation, is there any open innovation engineering web portal in ind...

is there any open innovation engineering web portal in india

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd