The f-wald test, Advanced Statistics

Assignment Help:

Primary Model

Below is a regression analysis without 17 outliers that have been removed

Regression Analysis: wfood versus totexp, income, age, nk

The regression equation is

wfood = 0.378 - 0.00129 totexp - 0.000054 income + 0.00170 age + 0.0317 nk

Predictor              Coef       SE Coef           T          P         VIF

Constant         0.37816     0.01356         27.89  0.000

totexp         -0.00128554  0.00006284  -20.46  0.000    1.324

income        -0.00005410  0.00004950   -1.09   0.275    1.341

age              0.0016993    0.0003058      5.56   0.000    1.065

nk                0.031717      0.004676        6.78   0.000    1.007

S = 0.0880161   R-Sq = 28.0%   R-Sq(adj) = 27.8%

Analysis of Variance

Source               DF       SS          MS         F           P

Regression         4      4.5159    1.1290  145.73  0.000

Residual Error   1497  11.5970   0.0077

  Lack of Fit       1328   10.1731  0.0077    0.91  0.806

  Pure Error        169    1.4239    0.0084

Total                  1501  16.1129

 

Secondary Model

Below is a regression analysis without 17 outliers that have been removed and dropping the income variable   

Regression Analysis: wfood versus totexp, age, nk

The regression equation is

wfood = 0.376 - 0.00132 totexp + 0.00165 age + 0.0317 nk

Predictor         Coef     SE Coef       T      P    VIF

Constant       0.37593     0.01341   28.04  0.000

totexp     -0.00131710  0.00005581  -23.60  0.000  1.045

age          0.0016462   0.0003019    5.45  0.000  1.038

nk            0.031672    0.004676    6.77  0.000  1.007

S = 0.0880218   R-Sq = 28.0%   R-Sq(adj) = 27.8%

Analysis of Variance

Source               DF       SS          MS          F           P

Regression         3       4.5067   1.5022   193.89  0.000

Residual Error   1498  11.6063  0.0077

  Lack of Fit       644    4.9570    0.0077    0.99     0.560

  Pure Error      854     6.6493    0.0078

Total               1501    16.1129

The Null Hypothesis - H0: No difference between the primary and secondary model

1465_The F-Wald Test.png

Since the F value is 1.2005 < 3.8477 there is sufficient evidence to suggest that we accept H0 implying that there is no difference between the primary and secondary model and income can be removed.


Related Discussions:- The f-wald test

Case Study, ACC – A pioneer in the Indian cement industry Associated Cemen...

ACC – A pioneer in the Indian cement industry Associated Cement Companies Ltd. (ACC) came into existence in 1936, after the merger of 10 companies belonging to four important bus

Variance inflation factor, VIF is the abbreviation of variance inflation fa...

VIF is the abbreviation of variance inflation factor which is a measure of the amount of multicollinearity that exists in a set of multiple regression variables. *The VIF value

Hot deck, Hot deck is a method broadly used in surveys for imputing the mi...

Hot deck is a method broadly used in surveys for imputing the missing values. In its easiest form the method includes sampling with replacement m values from the sample respondent

#titleassignment, I want to get the quotation of my on-line assignment its ...

I want to get the quotation of my on-line assignment its based on 1000 words. lecturer provide the video links and we have to watch the videos and highlights the key points also de

Explain negative hyper geometric distribution, Negative hyper geometric dis...

Negative hyper geometric distribution : In sampling without replacement from the population comprising of r elements of one kind and N - r of another, if two elements corresponding

Cross over design, The type of longitudinal study in which the subjects rec...

The type of longitudinal study in which the subjects receive different treatments on the various occasions. Random allocation is required to determine the order in which the treatm

Reciprocal transformation, Reciprocal transformation is a transformation o...

Reciprocal transformation is a transformation of the form y =1/x, which is specifically useful for certain types of variables. Resistances, for instance, become conductances, and

Explain median absolute deviation (mad), Median absolute deviation (MAD) : ...

Median absolute deviation (MAD) : It is the very robust estimator of the scale given by the following equation   or, in other words we can say that, the median of the absolute

Develop an algebraic linear programming model, Duck Lovers Unlimited (DLU) ...

Duck Lovers Unlimited (DLU) Inc. assembles specially configured light jet aircrafts for airborne duck hunting. The quarterly demand forecasts for the upcoming fiscal year are:

Explain healthy worker effect, Healthy worker effect : The occurrence where...

Healthy worker effect : The occurrence whereby employed individuals tend to have lower mortality rates than those who are unemployed. The effect, which can pose the serious problem

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd