The f-wald test, Advanced Statistics

Assignment Help:

Primary Model

Below is a regression analysis without 17 outliers that have been removed

Regression Analysis: wfood versus totexp, income, age, nk

The regression equation is

wfood = 0.378 - 0.00129 totexp - 0.000054 income + 0.00170 age + 0.0317 nk

Predictor              Coef       SE Coef           T          P         VIF

Constant         0.37816     0.01356         27.89  0.000

totexp         -0.00128554  0.00006284  -20.46  0.000    1.324

income        -0.00005410  0.00004950   -1.09   0.275    1.341

age              0.0016993    0.0003058      5.56   0.000    1.065

nk                0.031717      0.004676        6.78   0.000    1.007

S = 0.0880161   R-Sq = 28.0%   R-Sq(adj) = 27.8%

Analysis of Variance

Source               DF       SS          MS         F           P

Regression         4      4.5159    1.1290  145.73  0.000

Residual Error   1497  11.5970   0.0077

  Lack of Fit       1328   10.1731  0.0077    0.91  0.806

  Pure Error        169    1.4239    0.0084

Total                  1501  16.1129

 

Secondary Model

Below is a regression analysis without 17 outliers that have been removed and dropping the income variable   

Regression Analysis: wfood versus totexp, age, nk

The regression equation is

wfood = 0.376 - 0.00132 totexp + 0.00165 age + 0.0317 nk

Predictor         Coef     SE Coef       T      P    VIF

Constant       0.37593     0.01341   28.04  0.000

totexp     -0.00131710  0.00005581  -23.60  0.000  1.045

age          0.0016462   0.0003019    5.45  0.000  1.038

nk            0.031672    0.004676    6.77  0.000  1.007

S = 0.0880218   R-Sq = 28.0%   R-Sq(adj) = 27.8%

Analysis of Variance

Source               DF       SS          MS          F           P

Regression         3       4.5067   1.5022   193.89  0.000

Residual Error   1498  11.6063  0.0077

  Lack of Fit       644    4.9570    0.0077    0.99     0.560

  Pure Error      854     6.6493    0.0078

Total               1501    16.1129

The Null Hypothesis - H0: No difference between the primary and secondary model

1465_The F-Wald Test.png

Since the F value is 1.2005 < 3.8477 there is sufficient evidence to suggest that we accept H0 implying that there is no difference between the primary and secondary model and income can be removed.


Related Discussions:- The f-wald test

Categorical variable, Categorical variable : A variable which provides the ...

Categorical variable : A variable which provides the appropriate label of observation after the allocation to one of the several possible categories, for instance, the respiratory

Partial least squares, Partial least squares is an alternative to the mult...

Partial least squares is an alternative to the multiple regressions which, in spite of using the original q explanatory variables directly, constructs the new set of k regressor v

Auto correlation, Auto correlation : The correlation of the internal observ...

Auto correlation : The correlation of the internal observations in the time series, generally expressed as a function of the time lag between the observations. It is also used for

Describe monty hall problem, Monty Hall problem : A apparently counter-intu...

Monty Hall problem : A apparently counter-intuitive problem in the probability which gets its name from the TV game show, 'Let's Make a Deal' hosted by the Monty Hall. On show a pa

Explain yate s'' continuity correction, Yate s' continuity correction : Whe...

Yate s' continuity correction : When the testing for independence in contingency table, a continuous probability distribution, known as chi-squared distribution, is used as the app

Blinding, Blinding : A procedure used in clinical trials to get rid of the ...

Blinding : A procedure used in clinical trials to get rid of the possible bias which might be introduced if the patient and/or the doctor knew which treatment the patient is receiv

Describe multiple imputation, Multiple imputation : The Monte Carlo techniq...

Multiple imputation : The Monte Carlo technique in which missing values in the data set are replaced by m> 1 simulated versions, where m is usually small (say 3-10). Each of simula

Describe probability distribution, Probability distribution : For the discr...

Probability distribution : For the discrete random variable, a mathematical formula which provides the probability of each value of variable. See, for instance, binomial distributi

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd