The f-wald test, Advanced Statistics

Assignment Help:

Primary Model

Below is a regression analysis without 17 outliers that have been removed

Regression Analysis: wfood versus totexp, income, age, nk

The regression equation is

wfood = 0.378 - 0.00129 totexp - 0.000054 income + 0.00170 age + 0.0317 nk

Predictor              Coef       SE Coef           T          P         VIF

Constant         0.37816     0.01356         27.89  0.000

totexp         -0.00128554  0.00006284  -20.46  0.000    1.324

income        -0.00005410  0.00004950   -1.09   0.275    1.341

age              0.0016993    0.0003058      5.56   0.000    1.065

nk                0.031717      0.004676        6.78   0.000    1.007

S = 0.0880161   R-Sq = 28.0%   R-Sq(adj) = 27.8%

Analysis of Variance

Source               DF       SS          MS         F           P

Regression         4      4.5159    1.1290  145.73  0.000

Residual Error   1497  11.5970   0.0077

  Lack of Fit       1328   10.1731  0.0077    0.91  0.806

  Pure Error        169    1.4239    0.0084

Total                  1501  16.1129

 

Secondary Model

Below is a regression analysis without 17 outliers that have been removed and dropping the income variable   

Regression Analysis: wfood versus totexp, age, nk

The regression equation is

wfood = 0.376 - 0.00132 totexp + 0.00165 age + 0.0317 nk

Predictor         Coef     SE Coef       T      P    VIF

Constant       0.37593     0.01341   28.04  0.000

totexp     -0.00131710  0.00005581  -23.60  0.000  1.045

age          0.0016462   0.0003019    5.45  0.000  1.038

nk            0.031672    0.004676    6.77  0.000  1.007

S = 0.0880218   R-Sq = 28.0%   R-Sq(adj) = 27.8%

Analysis of Variance

Source               DF       SS          MS          F           P

Regression         3       4.5067   1.5022   193.89  0.000

Residual Error   1498  11.6063  0.0077

  Lack of Fit       644    4.9570    0.0077    0.99     0.560

  Pure Error      854     6.6493    0.0078

Total               1501    16.1129

The Null Hypothesis - H0: No difference between the primary and secondary model

1465_The F-Wald Test.png

Since the F value is 1.2005 < 3.8477 there is sufficient evidence to suggest that we accept H0 implying that there is no difference between the primary and secondary model and income can be removed.


Related Discussions:- The f-wald test

Regression, what are tests for residual with nonconstant variance in regres...

what are tests for residual with nonconstant variance in regression diagnostic checking?

Non parametric maximum likelihood (npml), Non parametric maximum likelihood...

Non parametric maximum likelihood (NPML) is a likelihood approach which does not need the specification of the full parametric family for the data. Usually, the non parametric max

Causality, Causality: The relating of the reasons to the effects they prod...

Causality: The relating of the reasons to the effects they produce. Several investigations in medicine seek to establish the causal relations between the events, for instance, whi

File drawer problem, The problem that the studies are not uniformly probabl...

The problem that the studies are not uniformly probable to be published in the scientific journals. There is evidence that the statistical significance is a main determining factor

To create a relative frequency histogram, The total amount of protein produ...

The total amount of protein produced by a dairy cow can be estimated from periodic testing of her milk.  The following are the total annual protein production values (lb) for 28 tw

Factorization theorem, The theorem relating structure of the likelihood to ...

The theorem relating structure of the likelihood to the concept of the sufficient statistic. Officially the necessary and sufficient condition which a statistic S be sufficient for

Bartlett decomposition, Bartlett decomposition : The expression for the ra...

Bartlett decomposition : The expression for the random matrix A which has a Wishart distribution as the product of the triangular matrix and the transpose of it. Letting each of x

Continual reassessment method, Continual reassessment method: An approach ...

Continual reassessment method: An approach which applies Bayesian inference for determining the maximum tolerated dose in a phase I trial. The method starts by assuming a logistic

Generalized linear models, Introduction to Generalized Linear Models (GLM) ...

Introduction to Generalized Linear Models (GLM) We introduce the notion of GLM as an extension of the traditional normal-theory-based linear regression models. This will be very

Epidemic curve, The plot of the number of cases of the disease against the ...

The plot of the number of cases of the disease against the time period. A large and sudden increase corresponds to an epidemic. The example of this is shown in the figure drawn bel

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd