The f-wald test, Advanced Statistics

Assignment Help:

Primary Model

Below is a regression analysis without 17 outliers that have been removed

Regression Analysis: wfood versus totexp, income, age, nk

The regression equation is

wfood = 0.378 - 0.00129 totexp - 0.000054 income + 0.00170 age + 0.0317 nk

Predictor              Coef       SE Coef           T          P         VIF

Constant         0.37816     0.01356         27.89  0.000

totexp         -0.00128554  0.00006284  -20.46  0.000    1.324

income        -0.00005410  0.00004950   -1.09   0.275    1.341

age              0.0016993    0.0003058      5.56   0.000    1.065

nk                0.031717      0.004676        6.78   0.000    1.007

S = 0.0880161   R-Sq = 28.0%   R-Sq(adj) = 27.8%

Analysis of Variance

Source               DF       SS          MS         F           P

Regression         4      4.5159    1.1290  145.73  0.000

Residual Error   1497  11.5970   0.0077

  Lack of Fit       1328   10.1731  0.0077    0.91  0.806

  Pure Error        169    1.4239    0.0084

Total                  1501  16.1129

 

Secondary Model

Below is a regression analysis without 17 outliers that have been removed and dropping the income variable   

Regression Analysis: wfood versus totexp, age, nk

The regression equation is

wfood = 0.376 - 0.00132 totexp + 0.00165 age + 0.0317 nk

Predictor         Coef     SE Coef       T      P    VIF

Constant       0.37593     0.01341   28.04  0.000

totexp     -0.00131710  0.00005581  -23.60  0.000  1.045

age          0.0016462   0.0003019    5.45  0.000  1.038

nk            0.031672    0.004676    6.77  0.000  1.007

S = 0.0880218   R-Sq = 28.0%   R-Sq(adj) = 27.8%

Analysis of Variance

Source               DF       SS          MS          F           P

Regression         3       4.5067   1.5022   193.89  0.000

Residual Error   1498  11.6063  0.0077

  Lack of Fit       644    4.9570    0.0077    0.99     0.560

  Pure Error      854     6.6493    0.0078

Total               1501    16.1129

The Null Hypothesis - H0: No difference between the primary and secondary model

1465_The F-Wald Test.png

Since the F value is 1.2005 < 3.8477 there is sufficient evidence to suggest that we accept H0 implying that there is no difference between the primary and secondary model and income can be removed.


Related Discussions:- The f-wald test

Treatment allocation ratio, Treatment allocation ratio is the ratio of the...

Treatment allocation ratio is the ratio of the number of subjects allocated to the two treatments in a clinical trial. The equal allocation is most usual in practice, but it might

Define hazard function, Hazard function : The risk which an individual expe...

Hazard function : The risk which an individual experiences an event in a small time interval, given that the individual has survived up to the starting of the interval. It is th

Double sampling, The procedure in which initially the sample of subjects is...

The procedure in which initially the sample of subjects is selected for generating the auxillary information only, and then the second sample is selected in which the variable of i

Intention-to-treat analysis, Intention-to-treat analysis is the process in...

Intention-to-treat analysis is the process in which all the patients randomly allocated to a treatment in the clinical trial are analyzed together as representing that particular

Link functions, Link functions: The link function relates the linear p...

Link functions: The link function relates the linear predictor ηi to the expected value of the data. In classical linear models the mean and the linear predictor are identical

Hanging rootogram, Hanging rootogram is   he diagram comparing the observe...

Hanging rootogram is   he diagram comparing the observed rootogram with the ?tted curve, in which dissimilarities between the two are displayed in relation to the horizontal axis,

Data squashing, An approach to decrease the size of very large data sets in...

An approach to decrease the size of very large data sets in which the data are first 'binned' and then statistics such as the mean and variance/covariance are calculated on each bi

Explain post stratification adjustment, Post stratification adjustmen t: On...

Post stratification adjustmen t: One of the most often used population weighting adjustments used in the complex surveys, in which weights for the elements in a class are multiplie

Bayes factor, Bayes factor : A summary of evidence for the modelM1 against ...

Bayes factor : A summary of evidence for the modelM1 against the another modelM0 provided by the set of data D, which can be used in the model selection. Given by the ratio of post

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd