The f-wald test, Advanced Statistics

Assignment Help:

Primary Model

Below is a regression analysis without 17 outliers that have been removed

Regression Analysis: wfood versus totexp, income, age, nk

The regression equation is

wfood = 0.378 - 0.00129 totexp - 0.000054 income + 0.00170 age + 0.0317 nk

Predictor              Coef       SE Coef           T          P         VIF

Constant         0.37816     0.01356         27.89  0.000

totexp         -0.00128554  0.00006284  -20.46  0.000    1.324

income        -0.00005410  0.00004950   -1.09   0.275    1.341

age              0.0016993    0.0003058      5.56   0.000    1.065

nk                0.031717      0.004676        6.78   0.000    1.007

S = 0.0880161   R-Sq = 28.0%   R-Sq(adj) = 27.8%

Analysis of Variance

Source               DF       SS          MS         F           P

Regression         4      4.5159    1.1290  145.73  0.000

Residual Error   1497  11.5970   0.0077

  Lack of Fit       1328   10.1731  0.0077    0.91  0.806

  Pure Error        169    1.4239    0.0084

Total                  1501  16.1129

 

Secondary Model

Below is a regression analysis without 17 outliers that have been removed and dropping the income variable   

Regression Analysis: wfood versus totexp, age, nk

The regression equation is

wfood = 0.376 - 0.00132 totexp + 0.00165 age + 0.0317 nk

Predictor         Coef     SE Coef       T      P    VIF

Constant       0.37593     0.01341   28.04  0.000

totexp     -0.00131710  0.00005581  -23.60  0.000  1.045

age          0.0016462   0.0003019    5.45  0.000  1.038

nk            0.031672    0.004676    6.77  0.000  1.007

S = 0.0880218   R-Sq = 28.0%   R-Sq(adj) = 27.8%

Analysis of Variance

Source               DF       SS          MS          F           P

Regression         3       4.5067   1.5022   193.89  0.000

Residual Error   1498  11.6063  0.0077

  Lack of Fit       644    4.9570    0.0077    0.99     0.560

  Pure Error      854     6.6493    0.0078

Total               1501    16.1129

The Null Hypothesis - H0: No difference between the primary and secondary model

1465_The F-Wald Test.png

Since the F value is 1.2005 < 3.8477 there is sufficient evidence to suggest that we accept H0 implying that there is no difference between the primary and secondary model and income can be removed.


Related Discussions:- The f-wald test

Design matrix, It is used generally for the matrix which specifies a statis...

It is used generally for the matrix which specifies a statistical model for a set of observations. For instance, in a one-way design with the three observations in one group, tw

Naor''s distribution, Naor's distribution is the discrete probability dist...

Naor's distribution is the discrete probability distribution which arises from the following model; Assume an urn contains n balls of which one is red and the remainder is whit

Explain longitudinal data, Longitudinal data : The data arising when each o...

Longitudinal data : The data arising when each of the number of subjects or patients give rise to the vector of measurements representing same variable observed at the number of di

Statistical methods with financial applications, The marketing manager of H...

The marketing manager of Handy Foods Ltd. is concerned with the sales appeal of one of the company's present label for one of its products. Market research indicates that supermark

#title.Decision Models., I have a problem I am trying to solve. An oil comp...

I have a problem I am trying to solve. An oil company thinks that there is a 60% chance that there is oil in the land they own. Before drilling they run a soil test. When there is

Incidental parameter problem, Incidental parameter problem is a problem wh...

Incidental parameter problem is a problem which sometimes occurs when the number of parameters increases in the tandem with the number of observations. For instance, models for pa

Data mining, The non-trivial extraction of implicit, earlier unknown and po...

The non-trivial extraction of implicit, earlier unknown and potentially useful information from data, specifically high-dimensional data, using pattern recognition, artificial inte

Frailty, A term usually used for unobserved individual heterogeneity. Such ...

A term usually used for unobserved individual heterogeneity. Such variation is of main concern in the medical statistics particularly in the analysis of the survival times where ha

Poisson regression, Poisson regression In case of Poisson regression w...

Poisson regression In case of Poisson regression we use ηi = g(µi) = log(µi) and a variance V ar(Yi) = φµi. The case φ = 1 corresponds to standard Poisson model. Poisson regre

Statistical & Quantitative Methods , Given: There are 4 jobs and 4 persons...

Given: There are 4 jobs and 4 persons. The cost incurred for each person and each job is as follows: Persons Job 1 Job 2 Job 3 Job 4 A 10 9 21 11 B 15 12 25 17 C 12 10 20 12 D 17

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd