The f-wald test, Advanced Statistics

Assignment Help:

Primary Model

Below is a regression analysis without 17 outliers that have been removed

Regression Analysis: wfood versus totexp, income, age, nk

The regression equation is

wfood = 0.378 - 0.00129 totexp - 0.000054 income + 0.00170 age + 0.0317 nk

Predictor              Coef       SE Coef           T          P         VIF

Constant         0.37816     0.01356         27.89  0.000

totexp         -0.00128554  0.00006284  -20.46  0.000    1.324

income        -0.00005410  0.00004950   -1.09   0.275    1.341

age              0.0016993    0.0003058      5.56   0.000    1.065

nk                0.031717      0.004676        6.78   0.000    1.007

S = 0.0880161   R-Sq = 28.0%   R-Sq(adj) = 27.8%

Analysis of Variance

Source               DF       SS          MS         F           P

Regression         4      4.5159    1.1290  145.73  0.000

Residual Error   1497  11.5970   0.0077

  Lack of Fit       1328   10.1731  0.0077    0.91  0.806

  Pure Error        169    1.4239    0.0084

Total                  1501  16.1129

 

Secondary Model

Below is a regression analysis without 17 outliers that have been removed and dropping the income variable   

Regression Analysis: wfood versus totexp, age, nk

The regression equation is

wfood = 0.376 - 0.00132 totexp + 0.00165 age + 0.0317 nk

Predictor         Coef     SE Coef       T      P    VIF

Constant       0.37593     0.01341   28.04  0.000

totexp     -0.00131710  0.00005581  -23.60  0.000  1.045

age          0.0016462   0.0003019    5.45  0.000  1.038

nk            0.031672    0.004676    6.77  0.000  1.007

S = 0.0880218   R-Sq = 28.0%   R-Sq(adj) = 27.8%

Analysis of Variance

Source               DF       SS          MS          F           P

Regression         3       4.5067   1.5022   193.89  0.000

Residual Error   1498  11.6063  0.0077

  Lack of Fit       644    4.9570    0.0077    0.99     0.560

  Pure Error      854     6.6493    0.0078

Total               1501    16.1129

The Null Hypothesis - H0: No difference between the primary and secondary model

1465_The F-Wald Test.png

Since the F value is 1.2005 < 3.8477 there is sufficient evidence to suggest that we accept H0 implying that there is no difference between the primary and secondary model and income can be removed.


Related Discussions:- The f-wald test

Define interval-censored observations, Interval-censored observations ar...

Interval-censored observations are the  observations which often occur in the context of studies of time elapsed to the particular event when subjects are not monitored regularl

Disease mapping, The method of displaying the geographical variability of t...

The method of displaying the geographical variability of the disease on maps using different colors, shading, etc. The logic is not new, but the arrival of computers and computer g

Line-intersect sampling, Line-intersect sampling is a technique of unequal...

Line-intersect sampling is a technique of unequal probability sampling for selecting the sampling units in the geographical area. A sample of lines is drawn in a study area and, w

Funnel plot, It is an informal method of assessing the effect of the public...

It is an informal method of assessing the effect of the publication bias, generally in the context of the meta-analysis. The effect measures from each of the reported study are plo

Extreme value distribution, The probability distribution, f (x), of largest...

The probability distribution, f (x), of largest extreme can be given as    The location parameter, α is the mode and β is the scale parameter. The mean, variance skewn

Ain why the simulated result doesn''t have to be exact as the, ain why the ...

ain why the simulated result doesn''t have to be exact as the theoretical calculation

Determine allowable setup cost, A metal fabrication process uses a die-cast...

A metal fabrication process uses a die-cast metal fastener at a uniform rate of 300 units per year. Currently, this item is currently purchased from an external supplier at a unit

Normality - reasons for screening data, Normality - Reasons for Screening...

Normality - Reasons for Screening Data Prior to analyzing multivariate normality, one should consider univariate normality Histogram, Normal Q-Qplot (values on x axis

Define hazard function, Hazard function : The risk which an individual expe...

Hazard function : The risk which an individual experiences an event in a small time interval, given that the individual has survived up to the starting of the interval. It is th

Explain personal probabilities, Personal probabilities : A radically specia...

Personal probabilities : A radically special approach for allocating probabilities to events than, for instance, the commonly used long-term relative frequency approach. In this ty

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd