The f-wald test, Advanced Statistics

Assignment Help:

Primary Model

Below is a regression analysis without 17 outliers that have been removed

Regression Analysis: wfood versus totexp, income, age, nk

The regression equation is

wfood = 0.378 - 0.00129 totexp - 0.000054 income + 0.00170 age + 0.0317 nk

Predictor              Coef       SE Coef           T          P         VIF

Constant         0.37816     0.01356         27.89  0.000

totexp         -0.00128554  0.00006284  -20.46  0.000    1.324

income        -0.00005410  0.00004950   -1.09   0.275    1.341

age              0.0016993    0.0003058      5.56   0.000    1.065

nk                0.031717      0.004676        6.78   0.000    1.007

S = 0.0880161   R-Sq = 28.0%   R-Sq(adj) = 27.8%

Analysis of Variance

Source               DF       SS          MS         F           P

Regression         4      4.5159    1.1290  145.73  0.000

Residual Error   1497  11.5970   0.0077

  Lack of Fit       1328   10.1731  0.0077    0.91  0.806

  Pure Error        169    1.4239    0.0084

Total                  1501  16.1129

 

Secondary Model

Below is a regression analysis without 17 outliers that have been removed and dropping the income variable   

Regression Analysis: wfood versus totexp, age, nk

The regression equation is

wfood = 0.376 - 0.00132 totexp + 0.00165 age + 0.0317 nk

Predictor         Coef     SE Coef       T      P    VIF

Constant       0.37593     0.01341   28.04  0.000

totexp     -0.00131710  0.00005581  -23.60  0.000  1.045

age          0.0016462   0.0003019    5.45  0.000  1.038

nk            0.031672    0.004676    6.77  0.000  1.007

S = 0.0880218   R-Sq = 28.0%   R-Sq(adj) = 27.8%

Analysis of Variance

Source               DF       SS          MS          F           P

Regression         3       4.5067   1.5022   193.89  0.000

Residual Error   1498  11.6063  0.0077

  Lack of Fit       644    4.9570    0.0077    0.99     0.560

  Pure Error      854     6.6493    0.0078

Total               1501    16.1129

The Null Hypothesis - H0: No difference between the primary and secondary model

1465_The F-Wald Test.png

Since the F value is 1.2005 < 3.8477 there is sufficient evidence to suggest that we accept H0 implying that there is no difference between the primary and secondary model and income can be removed.


Related Discussions:- The f-wald test

Component bar chart, Component bar chart : A bar chart which shows the comp...

Component bar chart : A bar chart which shows the component parts of the aggregate represented by the whole length of the bar. The component parts are shown as the sectors of bar w

Evaluate the maximum flow, In the network shown below, the rst of the two ...

In the network shown below, the rst of the two numbers on each arc indicates the arc capacity and the second (in parentheses) of the two numbers indicates the current  flow. Use t

Define high-dimensional data, High-dimensional data : This term used for da...

High-dimensional data : This term used for data sets which are characterized by the very large number of variables and a much more modest number of the observations. In the 21 st

Machine learning, Machine learning  is a term which literally means the ab...

Machine learning  is a term which literally means the ability of a machine to recognize patterns which have occurred repetitively and to improve its performance based on the past

The breusch-pagan test, The Null Hypothesis - H0:  There is no heteroscedas...

The Null Hypothesis - H0:  There is no heteroscedasticity i.e. β 1 = 0 The Alternative Hypothesis - H1:  There is heteroscedasticity i.e. β 1 0 Reject H0 if Q = ESS/2 >

Product-limit estimator, Product-limit estimator is a method for estimatin...

Product-limit estimator is a method for estimating the survival functions for the set of survival times, some of which might be censored observations. The logic behind the procedu

Bonferroni correction, Bonferroni correction : A procedure for guarding aga...

Bonferroni correction : A procedure for guarding against the rise in the probability of a type I error when performing the multiple signi?cance tests. To maintain probability of a

Explain regression through the origin, Regression through the origin : In s...

Regression through the origin : In some of the situations a relationship between the two variables estimated by the regression analysis is expected to pass by the origin because th

Explain median absolute deviation (mad), Median absolute deviation (MAD) : ...

Median absolute deviation (MAD) : It is the very robust estimator of the scale given by the following equation   or, in other words we can say that, the median of the absolute

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd