The f-wald test, Advanced Statistics

Assignment Help:

Primary Model

Below is a regression analysis without 17 outliers that have been removed

Regression Analysis: wfood versus totexp, income, age, nk

The regression equation is

wfood = 0.378 - 0.00129 totexp - 0.000054 income + 0.00170 age + 0.0317 nk

Predictor              Coef       SE Coef           T          P         VIF

Constant         0.37816     0.01356         27.89  0.000

totexp         -0.00128554  0.00006284  -20.46  0.000    1.324

income        -0.00005410  0.00004950   -1.09   0.275    1.341

age              0.0016993    0.0003058      5.56   0.000    1.065

nk                0.031717      0.004676        6.78   0.000    1.007

S = 0.0880161   R-Sq = 28.0%   R-Sq(adj) = 27.8%

Analysis of Variance

Source               DF       SS          MS         F           P

Regression         4      4.5159    1.1290  145.73  0.000

Residual Error   1497  11.5970   0.0077

  Lack of Fit       1328   10.1731  0.0077    0.91  0.806

  Pure Error        169    1.4239    0.0084

Total                  1501  16.1129

 

Secondary Model

Below is a regression analysis without 17 outliers that have been removed and dropping the income variable   

Regression Analysis: wfood versus totexp, age, nk

The regression equation is

wfood = 0.376 - 0.00132 totexp + 0.00165 age + 0.0317 nk

Predictor         Coef     SE Coef       T      P    VIF

Constant       0.37593     0.01341   28.04  0.000

totexp     -0.00131710  0.00005581  -23.60  0.000  1.045

age          0.0016462   0.0003019    5.45  0.000  1.038

nk            0.031672    0.004676    6.77  0.000  1.007

S = 0.0880218   R-Sq = 28.0%   R-Sq(adj) = 27.8%

Analysis of Variance

Source               DF       SS          MS          F           P

Regression         3       4.5067   1.5022   193.89  0.000

Residual Error   1498  11.6063  0.0077

  Lack of Fit       644    4.9570    0.0077    0.99     0.560

  Pure Error      854     6.6493    0.0078

Total               1501    16.1129

The Null Hypothesis - H0: No difference between the primary and secondary model

1465_The F-Wald Test.png

Since the F value is 1.2005 < 3.8477 there is sufficient evidence to suggest that we accept H0 implying that there is no difference between the primary and secondary model and income can be removed.


Related Discussions:- The f-wald test

Case Study, ACC – A pioneer in the Indian cement industry Associated Cemen...

ACC – A pioneer in the Indian cement industry Associated Cement Companies Ltd. (ACC) came into existence in 1936, after the merger of 10 companies belonging to four important bus

Institutional surveys, Institutional surveys are the surveys in which the ...

Institutional surveys are the surveys in which the primary sampling units are the institutions, for instance, hospitals. Within each of the sampled institution, a sample of the pa

Cluster sampling, Cluster sampling : A method or technique of sampling in w...

Cluster sampling : A method or technique of sampling in which the members of the population are arranged in groups (called as 'clusters'). A number of clusters are selected at the

Frequency polygon, It is the diagram used to display the values graphically...

It is the diagram used to display the values graphically in a frequency distribution. The frequencies are graphed as an ordinate against the class mid-points as abscissae. The p

Graduation, Graduation is the term is employed most often in the applicati...

Graduation is the term is employed most often in the application of the actuarial statistics to denote procedures by which the set or group of observed probabilities is adjusted t

Correspondence analysis, The method or technique for displaying the relatio...

The method or technique for displaying the relationships between categorical variables in a type of the scatter plot diagram. For two this type of variables displayed in the form o

EDUC 606, The GRE has a combined verbal and quantitative mean of 1000 and a...

The GRE has a combined verbal and quantitative mean of 1000 and a standard deviation of 200.

Principal components analysis, Principal components analysis is a process ...

Principal components analysis is a process for analysing multivariate data which transforms original variables into the new ones which are uncorrelated and account for decreasing

Window estimates, Window estimates is a term which occurs in the context o...

Window estimates is a term which occurs in the context of the both frequency domain and time domain estimation for the time series. In the previous it generally applies to weights

LASPEYERES QUANTITY INDEX, HOW TO OBTAIN THE LASPEYRES QUANTITY INDEX AND T...

HOW TO OBTAIN THE LASPEYRES QUANTITY INDEX AND THE FORMULA

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd