The f-wald test, Advanced Statistics

Assignment Help:

Primary Model

Below is a regression analysis without 17 outliers that have been removed

Regression Analysis: wfood versus totexp, income, age, nk

The regression equation is

wfood = 0.378 - 0.00129 totexp - 0.000054 income + 0.00170 age + 0.0317 nk

Predictor              Coef       SE Coef           T          P         VIF

Constant         0.37816     0.01356         27.89  0.000

totexp         -0.00128554  0.00006284  -20.46  0.000    1.324

income        -0.00005410  0.00004950   -1.09   0.275    1.341

age              0.0016993    0.0003058      5.56   0.000    1.065

nk                0.031717      0.004676        6.78   0.000    1.007

S = 0.0880161   R-Sq = 28.0%   R-Sq(adj) = 27.8%

Analysis of Variance

Source               DF       SS          MS         F           P

Regression         4      4.5159    1.1290  145.73  0.000

Residual Error   1497  11.5970   0.0077

  Lack of Fit       1328   10.1731  0.0077    0.91  0.806

  Pure Error        169    1.4239    0.0084

Total                  1501  16.1129

 

Secondary Model

Below is a regression analysis without 17 outliers that have been removed and dropping the income variable   

Regression Analysis: wfood versus totexp, age, nk

The regression equation is

wfood = 0.376 - 0.00132 totexp + 0.00165 age + 0.0317 nk

Predictor         Coef     SE Coef       T      P    VIF

Constant       0.37593     0.01341   28.04  0.000

totexp     -0.00131710  0.00005581  -23.60  0.000  1.045

age          0.0016462   0.0003019    5.45  0.000  1.038

nk            0.031672    0.004676    6.77  0.000  1.007

S = 0.0880218   R-Sq = 28.0%   R-Sq(adj) = 27.8%

Analysis of Variance

Source               DF       SS          MS          F           P

Regression         3       4.5067   1.5022   193.89  0.000

Residual Error   1498  11.6063  0.0077

  Lack of Fit       644    4.9570    0.0077    0.99     0.560

  Pure Error      854     6.6493    0.0078

Total               1501    16.1129

The Null Hypothesis - H0: No difference between the primary and secondary model

1465_The F-Wald Test.png

Since the F value is 1.2005 < 3.8477 there is sufficient evidence to suggest that we accept H0 implying that there is no difference between the primary and secondary model and income can be removed.


Related Discussions:- The f-wald test

Pattern recognition, Pattern recognition is a term for a technology that r...

Pattern recognition is a term for a technology that recognizes and analyses patterns automatically by machine and which has been used successfully in many areas of application inc

Explanatory variables, The variables appearing on the right-hand side of eq...

The variables appearing on the right-hand side of equations defining, for instance, multiple regressions or the logistic regression, and which seek to predict or 'explain' response

Cross over design, The type of longitudinal study in which the subjects rec...

The type of longitudinal study in which the subjects receive different treatments on the various occasions. Random allocation is required to determine the order in which the treatm

F-test, A test for equality of the variances of the two populations having ...

A test for equality of the variances of the two populations having normal distributions, based on the ratio of the variances of the sample of observations taken from each. Most fre

Definition, what is operational gaining

what is operational gaining

Explain post stratification adjustment, Post stratification adjustmen t: On...

Post stratification adjustmen t: One of the most often used population weighting adjustments used in the complex surveys, in which weights for the elements in a class are multiplie

Extreme value distribution, The probability distribution, f (x), of largest...

The probability distribution, f (x), of largest extreme can be given as    The location parameter, α is the mode and β is the scale parameter. The mean, variance skewn

Asymmetric proximity matrices, Asymmetric proximity matrices : Proximity ma...

Asymmetric proximity matrices : Proximity matrices in which the non-diagonal elements, in the ith row and jth column and the jth row and ith column, are not essentially equal. Exam

Randomization tests, Randomization tests are the procedures for determinin...

Randomization tests are the procedures for determining the statistical significance directly from the data with- out recourse to some particular sampling distribution. For instanc

Complier average causal effect (cace), Complier average causal effect (CACE...

Complier average causal effect (CACE): The treatment effect amid true compliers in the clinical trial. For the suitable response variable, the CACE is given by the difference in o

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd