The f-wald test, Advanced Statistics

Assignment Help:

Primary Model

Below is a regression analysis without 17 outliers that have been removed

Regression Analysis: wfood versus totexp, income, age, nk

The regression equation is

wfood = 0.378 - 0.00129 totexp - 0.000054 income + 0.00170 age + 0.0317 nk

Predictor              Coef       SE Coef           T          P         VIF

Constant         0.37816     0.01356         27.89  0.000

totexp         -0.00128554  0.00006284  -20.46  0.000    1.324

income        -0.00005410  0.00004950   -1.09   0.275    1.341

age              0.0016993    0.0003058      5.56   0.000    1.065

nk                0.031717      0.004676        6.78   0.000    1.007

S = 0.0880161   R-Sq = 28.0%   R-Sq(adj) = 27.8%

Analysis of Variance

Source               DF       SS          MS         F           P

Regression         4      4.5159    1.1290  145.73  0.000

Residual Error   1497  11.5970   0.0077

  Lack of Fit       1328   10.1731  0.0077    0.91  0.806

  Pure Error        169    1.4239    0.0084

Total                  1501  16.1129

 

Secondary Model

Below is a regression analysis without 17 outliers that have been removed and dropping the income variable   

Regression Analysis: wfood versus totexp, age, nk

The regression equation is

wfood = 0.376 - 0.00132 totexp + 0.00165 age + 0.0317 nk

Predictor         Coef     SE Coef       T      P    VIF

Constant       0.37593     0.01341   28.04  0.000

totexp     -0.00131710  0.00005581  -23.60  0.000  1.045

age          0.0016462   0.0003019    5.45  0.000  1.038

nk            0.031672    0.004676    6.77  0.000  1.007

S = 0.0880218   R-Sq = 28.0%   R-Sq(adj) = 27.8%

Analysis of Variance

Source               DF       SS          MS          F           P

Regression         3       4.5067   1.5022   193.89  0.000

Residual Error   1498  11.6063  0.0077

  Lack of Fit       644    4.9570    0.0077    0.99     0.560

  Pure Error      854     6.6493    0.0078

Total               1501    16.1129

The Null Hypothesis - H0: No difference between the primary and secondary model

1465_The F-Wald Test.png

Since the F value is 1.2005 < 3.8477 there is sufficient evidence to suggest that we accept H0 implying that there is no difference between the primary and secondary model and income can be removed.


Related Discussions:- The f-wald test

Glejser test, Glejser test is the test for the heteroscedasticity in the e...

Glejser test is the test for the heteroscedasticity in the error terms of the regression analysis which involves regressing the absolute values of the regression residuals for the

Path analysis, Path analysis  is  a device for evaluating the interrelat...

Path analysis  is  a device for evaluating the interrelationships among the variables by analyzing their correlational structure. The relationships between the variables are man

Daycare, facts and statistics about daycare

facts and statistics about daycare

Business forcastin.., elements , importance, limitation, and theories

elements , importance, limitation, and theories

Over dispersion, Over dispersion is the phenomenon which occurs when empir...

Over dispersion is the phenomenon which occurs when empirical variance in the data exceeds the nominal variance under some supposed model. Most often encountered when the modeling

Orthogonal, Orthogonal is a term which occurs in several regions of the st...

Orthogonal is a term which occurs in several regions of the statistics with different meanings in each case. Most commonly the encountered in the relation to two variables or t

Explain prospective studies, Prospective study : The studies in which indiv...

Prospective study : The studies in which individuals are followed-up over the period of time. A general example of this type of investigation is where the samples of individuals ar

Bioassay, Bioassay : It is an abbreviation of biological assay, which in it...

Bioassay : It is an abbreviation of biological assay, which in its classical form includes an experiment conducted on biological material to determine relative potency of test and

Diggle kenward model for dropouts, The model which is applicable to the lon...

The model which is applicable to the longitudinal data in which the dropout process might give rise to the informative lost values. Specifically if the study protocol specifies the

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd