The f-wald test, Advanced Statistics

Assignment Help:

Primary Model

Below is a regression analysis without 17 outliers that have been removed

Regression Analysis: wfood versus totexp, income, age, nk

The regression equation is

wfood = 0.378 - 0.00129 totexp - 0.000054 income + 0.00170 age + 0.0317 nk

Predictor              Coef       SE Coef           T          P         VIF

Constant         0.37816     0.01356         27.89  0.000

totexp         -0.00128554  0.00006284  -20.46  0.000    1.324

income        -0.00005410  0.00004950   -1.09   0.275    1.341

age              0.0016993    0.0003058      5.56   0.000    1.065

nk                0.031717      0.004676        6.78   0.000    1.007

S = 0.0880161   R-Sq = 28.0%   R-Sq(adj) = 27.8%

Analysis of Variance

Source               DF       SS          MS         F           P

Regression         4      4.5159    1.1290  145.73  0.000

Residual Error   1497  11.5970   0.0077

  Lack of Fit       1328   10.1731  0.0077    0.91  0.806

  Pure Error        169    1.4239    0.0084

Total                  1501  16.1129

 

Secondary Model

Below is a regression analysis without 17 outliers that have been removed and dropping the income variable   

Regression Analysis: wfood versus totexp, age, nk

The regression equation is

wfood = 0.376 - 0.00132 totexp + 0.00165 age + 0.0317 nk

Predictor         Coef     SE Coef       T      P    VIF

Constant       0.37593     0.01341   28.04  0.000

totexp     -0.00131710  0.00005581  -23.60  0.000  1.045

age          0.0016462   0.0003019    5.45  0.000  1.038

nk            0.031672    0.004676    6.77  0.000  1.007

S = 0.0880218   R-Sq = 28.0%   R-Sq(adj) = 27.8%

Analysis of Variance

Source               DF       SS          MS          F           P

Regression         3       4.5067   1.5022   193.89  0.000

Residual Error   1498  11.6063  0.0077

  Lack of Fit       644    4.9570    0.0077    0.99     0.560

  Pure Error      854     6.6493    0.0078

Total               1501    16.1129

The Null Hypothesis - H0: No difference between the primary and secondary model

1465_The F-Wald Test.png

Since the F value is 1.2005 < 3.8477 there is sufficient evidence to suggest that we accept H0 implying that there is no difference between the primary and secondary model and income can be removed.


Related Discussions:- The f-wald test

Define Geo statistics, Geo statistics: The body of methods useful for unde...

Geo statistics: The body of methods useful for understanding and modelling spatial variability in a course of interest. Central to these techniques is the idea that measurements t

Mareg, MAREG is the software package for the analysis of the marginal regr...

MAREG is the software package for the analysis of the marginal regression models. The package permits the application of generalized estimating equations and the maximum likelihoo

Hazard regression, Hazard regression is the procedure for modeling the haz...

Hazard regression is the procedure for modeling the hazard function which does not depend on the suppositions made in Cox's proportional hazards model, namely that the log-hazard

Hosmer-lemeshow test, Hosmer-Lemeshow test is a goodness-of-fit test taken...

Hosmer-Lemeshow test is a goodness-of-fit test taken in use in logistic regression, particularly when there are regular covariates. Units are spitted into deciles based on predict

Describe ignorability., Ignorability : The missing data mechanism is said t...

Ignorability : The missing data mechanism is said to be ignorable for likelihood inference if (1) the joint likelihood for the responses of the interest and missing data indicators

EM, What is the EM?

What is the EM?

White''s general heteroscedasticity test, The Null Hypothesis - H0:  γ 1 =...

The Null Hypothesis - H0:  γ 1 = γ 2 = ...  =  0  i.e.  there is no heteroscedasticity in the model The Alternative Hypothesis - H1:  at least one of the γ i 's are not equal

Relative risk, Relative risk is the measure of the association between the...

Relative risk is the measure of the association between the exposure to a particular factor and the risk or probability of a convinced outcome, calculated as follows     therefor

Cellular proliferation models, Cellular proliferation models : Models are u...

Cellular proliferation models : Models are used to describe the growth of the  cell populations. One of the example is the deterministic model   where N(t) is the number of cel

Generalized estimating equations (gee), Technically the multivariate analog...

Technically the multivariate analogue of the quasi-likelihood with the same feature that it leads to consistent inferences about the mean responses without needing specific supposi

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd