The f-wald test, Advanced Statistics

Assignment Help:

Primary Model

Below is a regression analysis without 17 outliers that have been removed

Regression Analysis: wfood versus totexp, income, age, nk

The regression equation is

wfood = 0.378 - 0.00129 totexp - 0.000054 income + 0.00170 age + 0.0317 nk

Predictor              Coef       SE Coef           T          P         VIF

Constant         0.37816     0.01356         27.89  0.000

totexp         -0.00128554  0.00006284  -20.46  0.000    1.324

income        -0.00005410  0.00004950   -1.09   0.275    1.341

age              0.0016993    0.0003058      5.56   0.000    1.065

nk                0.031717      0.004676        6.78   0.000    1.007

S = 0.0880161   R-Sq = 28.0%   R-Sq(adj) = 27.8%

Analysis of Variance

Source               DF       SS          MS         F           P

Regression         4      4.5159    1.1290  145.73  0.000

Residual Error   1497  11.5970   0.0077

  Lack of Fit       1328   10.1731  0.0077    0.91  0.806

  Pure Error        169    1.4239    0.0084

Total                  1501  16.1129

 

Secondary Model

Below is a regression analysis without 17 outliers that have been removed and dropping the income variable   

Regression Analysis: wfood versus totexp, age, nk

The regression equation is

wfood = 0.376 - 0.00132 totexp + 0.00165 age + 0.0317 nk

Predictor         Coef     SE Coef       T      P    VIF

Constant       0.37593     0.01341   28.04  0.000

totexp     -0.00131710  0.00005581  -23.60  0.000  1.045

age          0.0016462   0.0003019    5.45  0.000  1.038

nk            0.031672    0.004676    6.77  0.000  1.007

S = 0.0880218   R-Sq = 28.0%   R-Sq(adj) = 27.8%

Analysis of Variance

Source               DF       SS          MS          F           P

Regression         3       4.5067   1.5022   193.89  0.000

Residual Error   1498  11.6063  0.0077

  Lack of Fit       644    4.9570    0.0077    0.99     0.560

  Pure Error      854     6.6493    0.0078

Total               1501    16.1129

The Null Hypothesis - H0: No difference between the primary and secondary model

1465_The F-Wald Test.png

Since the F value is 1.2005 < 3.8477 there is sufficient evidence to suggest that we accept H0 implying that there is no difference between the primary and secondary model and income can be removed.


Related Discussions:- The f-wald test

RESEARCH METHODS AND STATISTICS.., a researcher is interested in whether st...

a researcher is interested in whether students who attend privte high schools have higher average SAT Scores than students in the general population. a random sample of 90 student

Reasons for screening data, Reasons for screening data     Garbage i...

Reasons for screening data     Garbage in-garbage out     Missing data          a. Amount of missing data is less crucial than the pattern of it. If randomly

Rational –experiential inventory, Demographic data: Age: continuous vari...

Demographic data: Age: continuous variable Gender: categorical variable with males coded 1, females coded 2. Relationship status: categorical variable 1 to 5. Rational

Function of Power, In an experiment, power is a function of 1. The number o...

In an experiment, power is a function of 1. The number of variables being measured and the beta level 2. The effect size, internal validity and the beta level 3. The number of part

Higher criticism, Higher criticism is a multiple-comparison test concept a...

Higher criticism is a multiple-comparison test concept arising from the situation where there are number of independent tests of significance and interest lies in the rejecting jo

Matching, Matching is the method of making a study group and a comparison ...

Matching is the method of making a study group and a comparison group comparable with respect to the extraneous factors. Generally used in the retrospective studies when selecting

Multilevel models, Multilevel models are the regression models for the mul...

Multilevel models are the regression models for the multilevel or clustered data where units i are nested in the clusters j, for example a cross-sectional study where students are

Computer-intensive methods, Computer-intensive methods : The statistical me...

Computer-intensive methods : The statistical methods which require almost identical computations on the data repeated number of times. The term computer intensive is, certainly, a

Direct edacyclic graph, Formal graphical representation of the "causal diag...

Formal graphical representation of the "causal diagrams" or the "path diagrams" where the  relationships are directed but acyclic (that is no feedback relations allowed). Plays an

Business forcastin.., elements , importance, limitation, and theories

elements , importance, limitation, and theories

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd