The f-wald test, Advanced Statistics

Assignment Help:

Primary Model

Below is a regression analysis without 17 outliers that have been removed

Regression Analysis: wfood versus totexp, income, age, nk

The regression equation is

wfood = 0.378 - 0.00129 totexp - 0.000054 income + 0.00170 age + 0.0317 nk

Predictor              Coef       SE Coef           T          P         VIF

Constant         0.37816     0.01356         27.89  0.000

totexp         -0.00128554  0.00006284  -20.46  0.000    1.324

income        -0.00005410  0.00004950   -1.09   0.275    1.341

age              0.0016993    0.0003058      5.56   0.000    1.065

nk                0.031717      0.004676        6.78   0.000    1.007

S = 0.0880161   R-Sq = 28.0%   R-Sq(adj) = 27.8%

Analysis of Variance

Source               DF       SS          MS         F           P

Regression         4      4.5159    1.1290  145.73  0.000

Residual Error   1497  11.5970   0.0077

  Lack of Fit       1328   10.1731  0.0077    0.91  0.806

  Pure Error        169    1.4239    0.0084

Total                  1501  16.1129

 

Secondary Model

Below is a regression analysis without 17 outliers that have been removed and dropping the income variable   

Regression Analysis: wfood versus totexp, age, nk

The regression equation is

wfood = 0.376 - 0.00132 totexp + 0.00165 age + 0.0317 nk

Predictor         Coef     SE Coef       T      P    VIF

Constant       0.37593     0.01341   28.04  0.000

totexp     -0.00131710  0.00005581  -23.60  0.000  1.045

age          0.0016462   0.0003019    5.45  0.000  1.038

nk            0.031672    0.004676    6.77  0.000  1.007

S = 0.0880218   R-Sq = 28.0%   R-Sq(adj) = 27.8%

Analysis of Variance

Source               DF       SS          MS          F           P

Regression         3       4.5067   1.5022   193.89  0.000

Residual Error   1498  11.6063  0.0077

  Lack of Fit       644    4.9570    0.0077    0.99     0.560

  Pure Error      854     6.6493    0.0078

Total               1501    16.1129

The Null Hypothesis - H0: No difference between the primary and secondary model

1465_The F-Wald Test.png

Since the F value is 1.2005 < 3.8477 there is sufficient evidence to suggest that we accept H0 implying that there is no difference between the primary and secondary model and income can be removed.


Related Discussions:- The f-wald test

Scatter plots, The scatter plot of SRES1 versus totexp demonstrates that th...

The scatter plot of SRES1 versus totexp demonstrates that there is non-linear relationship that exists as most of the points are below and above zero. The scatter plot show that th

File drawer problem, The problem that the studies are not uniformly probabl...

The problem that the studies are not uniformly probable to be published in the scientific journals. There is evidence that the statistical significance is a main determining factor

Parks test, The Null Hypothesis - H0: β 1 = 0 i.e. there is homoscedastici...

The Null Hypothesis - H0: β 1 = 0 i.e. there is homoscedasticity errors and no heteroscedasticity exists The Alternative Hypothesis - H1: β 1 ≠ 0 i.e. there is no homoscedasti

Statistical methods with financial applications, The marketing manager of H...

The marketing manager of Handy Foods Ltd. is concerned with the sales appeal of one of the company's present label for one of its products. Market research indicates that supermark

Factor, The term used in a variety of methods in statistics, but mostly to ...

The term used in a variety of methods in statistics, but mostly to refer to the categorical variable, with a less number of levels, under examination in an experiment as a possible

Dirichlet process mixture models, The nonparametric Bayesian inference appr...

The nonparametric Bayesian inference approach to using the finite mixture distributions for modelling data suspected of the containing distinct groups of observations; this approac

Partial autocorrelation function, The graph for Partial Autocorrelation Fun...

The graph for Partial Autocorrelation Function for RES1 shows that there is no autocorrelation even though there are alternating spikes because they fall inside the 5% significance

Finite population correction, This term sometimes used to describe the extr...

This term sometimes used to describe the extra factor in variance of the sample mean when n sample values are drawn without the replacement from the finite population of size N. Th

Cellular proliferation models, Cellular proliferation models : Models are u...

Cellular proliferation models : Models are used to describe the growth of the  cell populations. One of the example is the deterministic model   where N(t) is the number of cel

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd