The f-wald test, Advanced Statistics

Assignment Help:

Primary Model

Below is a regression analysis without 17 outliers that have been removed

Regression Analysis: wfood versus totexp, income, age, nk

The regression equation is

wfood = 0.378 - 0.00129 totexp - 0.000054 income + 0.00170 age + 0.0317 nk

Predictor              Coef       SE Coef           T          P         VIF

Constant         0.37816     0.01356         27.89  0.000

totexp         -0.00128554  0.00006284  -20.46  0.000    1.324

income        -0.00005410  0.00004950   -1.09   0.275    1.341

age              0.0016993    0.0003058      5.56   0.000    1.065

nk                0.031717      0.004676        6.78   0.000    1.007

S = 0.0880161   R-Sq = 28.0%   R-Sq(adj) = 27.8%

Analysis of Variance

Source               DF       SS          MS         F           P

Regression         4      4.5159    1.1290  145.73  0.000

Residual Error   1497  11.5970   0.0077

  Lack of Fit       1328   10.1731  0.0077    0.91  0.806

  Pure Error        169    1.4239    0.0084

Total                  1501  16.1129

 

Secondary Model

Below is a regression analysis without 17 outliers that have been removed and dropping the income variable   

Regression Analysis: wfood versus totexp, age, nk

The regression equation is

wfood = 0.376 - 0.00132 totexp + 0.00165 age + 0.0317 nk

Predictor         Coef     SE Coef       T      P    VIF

Constant       0.37593     0.01341   28.04  0.000

totexp     -0.00131710  0.00005581  -23.60  0.000  1.045

age          0.0016462   0.0003019    5.45  0.000  1.038

nk            0.031672    0.004676    6.77  0.000  1.007

S = 0.0880218   R-Sq = 28.0%   R-Sq(adj) = 27.8%

Analysis of Variance

Source               DF       SS          MS          F           P

Regression         3       4.5067   1.5022   193.89  0.000

Residual Error   1498  11.6063  0.0077

  Lack of Fit       644    4.9570    0.0077    0.99     0.560

  Pure Error      854     6.6493    0.0078

Total               1501    16.1129

The Null Hypothesis - H0: No difference between the primary and secondary model

1465_The F-Wald Test.png

Since the F value is 1.2005 < 3.8477 there is sufficient evidence to suggest that we accept H0 implying that there is no difference between the primary and secondary model and income can be removed.


Related Discussions:- The f-wald test

To create a relative frequency histogram, The total amount of protein produ...

The total amount of protein produced by a dairy cow can be estimated from periodic testing of her milk.  The following are the total annual protein production values (lb) for 28 tw

Conditional probability, Conditional probability : The probability that an ...

Conditional probability : The probability that an event occurs given the outcome of other event. Generally written, Pr(A|B). For instance, the probability of a person being color b

Calculate the probability, (a) A plane timetable states that a particular p...

(a) A plane timetable states that a particular plane is due at 2pm but the actual arrival time isuniformly distributed between 1pm and 3pm. (i) Calculate the probability that th

Best subsets regression, In the time series plot and scatter graphs there w...

In the time series plot and scatter graphs there were many outliers that were clearly visible. These have been removed to identify if they were influential or had high leverage and

Paired samples, Paired samples are the two samples of the observations wit...

Paired samples are the two samples of the observations with the characteristic feature with each of the observation in one sample have only one matching observation in the other s

Density estimation, Procedures for estimating the probability distributions...

Procedures for estimating the probability distributions without supposing any particular functional form. Constructing the histogram is perhaps the easiest example of such type of

Atomistic fallacy, Atomistic fallacy : A fallacy which arises because of th...

Atomistic fallacy : A fallacy which arises because of the association between two variables at the individual level might vary from the association between the same two variables m

Bartlett decomposition, Bartlett decomposition : The expression for the ra...

Bartlett decomposition : The expression for the random matrix A which has a Wishart distribution as the product of the triangular matrix and the transpose of it. Letting each of x

Logistic regression - computing log odds without probabiliti, Please help w...

Please help with following problem: : Let’s consider the logistic regression model, which we will refer to as Model 1, given by log(pi / [1-pi]) = 0.25 + 0.32*X1 + 0.70*X2 + 0.

Omitted covariates, Omitted covariates is a term generally found in the co...

Omitted covariates is a term generally found in the connection with regression modelling, where the model has been incompletely specified by not including significant covariates.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd