The f-wald test, Advanced Statistics

Assignment Help:

Primary Model

Below is a regression analysis without 17 outliers that have been removed

Regression Analysis: wfood versus totexp, income, age, nk

The regression equation is

wfood = 0.378 - 0.00129 totexp - 0.000054 income + 0.00170 age + 0.0317 nk

Predictor              Coef       SE Coef           T          P         VIF

Constant         0.37816     0.01356         27.89  0.000

totexp         -0.00128554  0.00006284  -20.46  0.000    1.324

income        -0.00005410  0.00004950   -1.09   0.275    1.341

age              0.0016993    0.0003058      5.56   0.000    1.065

nk                0.031717      0.004676        6.78   0.000    1.007

S = 0.0880161   R-Sq = 28.0%   R-Sq(adj) = 27.8%

Analysis of Variance

Source               DF       SS          MS         F           P

Regression         4      4.5159    1.1290  145.73  0.000

Residual Error   1497  11.5970   0.0077

  Lack of Fit       1328   10.1731  0.0077    0.91  0.806

  Pure Error        169    1.4239    0.0084

Total                  1501  16.1129

 

Secondary Model

Below is a regression analysis without 17 outliers that have been removed and dropping the income variable   

Regression Analysis: wfood versus totexp, age, nk

The regression equation is

wfood = 0.376 - 0.00132 totexp + 0.00165 age + 0.0317 nk

Predictor         Coef     SE Coef       T      P    VIF

Constant       0.37593     0.01341   28.04  0.000

totexp     -0.00131710  0.00005581  -23.60  0.000  1.045

age          0.0016462   0.0003019    5.45  0.000  1.038

nk            0.031672    0.004676    6.77  0.000  1.007

S = 0.0880218   R-Sq = 28.0%   R-Sq(adj) = 27.8%

Analysis of Variance

Source               DF       SS          MS          F           P

Regression         3       4.5067   1.5022   193.89  0.000

Residual Error   1498  11.6063  0.0077

  Lack of Fit       644    4.9570    0.0077    0.99     0.560

  Pure Error      854     6.6493    0.0078

Total               1501    16.1129

The Null Hypothesis - H0: No difference between the primary and secondary model

1465_The F-Wald Test.png

Since the F value is 1.2005 < 3.8477 there is sufficient evidence to suggest that we accept H0 implying that there is no difference between the primary and secondary model and income can be removed.


Related Discussions:- The f-wald test

Statistical methods with financial applications, The marketing manager of H...

The marketing manager of Handy Foods Ltd. is concerned with the sales appeal of one of the company's present label for one of its products. Market research indicates that supermark

Weathervane plot, Weathervane plot is the graphical display of the multiva...

Weathervane plot is the graphical display of the multivariate data based on bubble plot. The latter is enhanced by the addiction of the lines whose lengths and directions code the

Rational –experiential inventory, Demographic data: Age: continuous vari...

Demographic data: Age: continuous variable Gender: categorical variable with males coded 1, females coded 2. Relationship status: categorical variable 1 to 5. Rational

Em algorithm, The method or technique for producing the sequence of paramet...

The method or technique for producing the sequence of parameter estimates that, under the mild regularity conditions, converges to maximum likelihood estimator. Of particular signi

Regression to the mean, Regression to the mean is the procedure first note...

Regression to the mean is the procedure first noted by Sir Francis Galton that 'each peculiarity in man is shared by his kinsmen, but on average to the less degree.' Hence the ten

Categorizing continuous variables, Categorizing continuous variables : A pr...

Categorizing continuous variables : A practice which involves the conversion of the continuous variables into the series of the categories, which is common in the field of medical

Falsediscoveryrate (fdr), The approach of controlling the error rate in an ...

The approach of controlling the error rate in an exploratory analysis where number of hypotheses are tested, but where the strict control which is provided by multiple comparison p

Times series plots, There is high level of fluctuation in a zigzag pattern ...

There is high level of fluctuation in a zigzag pattern in the time series for RESI1 which indicates that there is possibly negative autocorrelation present. Column C11 show

Cointegration, Cointegration : The vector of not motionless time sequence i...

Cointegration : The vector of not motionless time sequence is said to be cointegrated if the linear combination of the individual series is stationary. Facilitates suitable testing

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd