Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
The expected monetary value method
The expected pay off as profit associated with a described combination of act and event is acquired by multiplying the pay off for that act and event combination by the probability of occurrence of the described event. The expected monetary value or EMV of an act is the sum of all expected conditional profits associated along with that act
Illustration
A manager has a choice among
i. A risky contract promising of shs 7 million along with probability 0.6 and shs 4 million along with probability 0.4 and
ii. A diversified portfolio consisting of two contracts along with independent outcomes each promising Shs 3.5 million along with probability 0.6 and shs 2 million along with probability 0.4
Could you arrive at the decision by using EMV method?
Solution
The conditional payoff table for the problem may be constructed as given below:
(Shillings in millions)
Event Ei
Probability (Ei)
Conditional pay offs decision
Expected pay off decision
(i)
Contract (ii)
Portfolio(iii)
Contract (i) x (ii)
Portfolio (i) x (iii)
Ei
0.6
7
3.5
4.2
2.1
E2
0.4
4
2
1.6
0.8
EMV
5.8
2.9
By using the EMV method the manager must go in for the risky contract that will yield him a higher expected monetary value of shs 5.8 million
Q4. Assume that the distance that a car runs on one liter of petrol varies inversely as the square of the speed at which it is driven. It gives a run of 25km per liter at a speed o
Now we start solving constant linear, coefficient and second order differential and homogeneous equations. Thus, let's recap how we do this from the previous section. We start alon
17-12
Regression line drawn as Y=C+1075x, when x was 2, and y was 239, given that y intercept was 11. calculate the residual
In the innovations algorithm, show that for each n = 2, the innovation Xn - ˆXn is uncorrelated with X1, . . . , Xn-1. Conclude that Xn - ˆXn is uncorrelated with the innovations X
Richland Health has three hospitals in the greater Tampa, Florida area. Demand for patient services varies considerably during the fall and winter months due to the temporary influ
-3x=-57
Verify Liouville''''s formula for y "-y" - y'''' + y = 0 in (0, 1) ?
Let D(subscript12) = ({x,y : x^2 = e ; y^6 = e ; xy =(y^-1) x}) a) Which of the following subsets are subgroups of D(subscript12) ? Justify your answer. i) {x,y,xy,y^2,y^3,e}
Solve 9 sin ( 2 x )= -5 cos(2x ) on[-10,0]. Solution At first glance this problem appears to be at odds with the sentence preceding the example. However, it really isn't.
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd