The definition of the limit, Mathematics

Assignment Help:

The Definition of the Limit

In this section we will look at the precise, mathematical definition of three types of limits we'll be looking at the precise definition of limits at finite points which have finite values, limits which are infinity & limits at infinity.  We'll also give the accurate, mathematical definition of continuity.

Let's begin this section out with the definition of a limit at a finite point which has a finite value.

Definition 1 

Let f(x) be a function described on an interval which contains x = a , except possibly at x = a .  Then we say that,

 

If for each number ε > 0 there is some number δ > 0 such that

|f ( x ) - L | < ε             whenever       0 < |x - a| < δ

That's mouth full. Now that it's written down, just what does it mean?

Let's take a look at the given graph and let's also suppose that the limit does exist.

539_limit30.png

What the definition is saying us is that for any number ε > 0 which we pick we can go to our graph and sketch two horizontal lines at L + ε and L - ε as illustrated onto the graph above. Then somewhere out there in the world is another number δ > 0, that we will have to determine, which will let us to add in two vertical lines to our graph at a + δ & a - δ .

Now, if we will take any x in the pink region, i.e. between a + δ and a - δ , then this x will be near to a than either of a + δ and a - δ

                                                   |x - a| < δ

If now we identify the point on the graph which our choice of x gives then this point on the graph will lie in the intersection of the pink and yellow region.  It means that this function value f(x) will be near to L than either of L + ε & L - ε .  Or,

                                                        |f ( x ) - L | < ε

Thus, if we take a value of x in the pink region then the graph for those values of x will lie between the yellow region.

Notice as well that there are in fact an infinite number of possible δ 's that we can select.  Actually, if we go back & look at the graph above this looks like we could have taken a slightly larger δ and yet gotten the graph from that pink region to be totally contained in the yellow region.

Also, notice as well that as the definition points out we only have to ensure that the function is described in some interval around x = a however we don't really care if it is defined at x = a . Recall that limits do not care about what is happening at the point; they only care  about what is happening about the point in question.

Now that we've the definition out of the way & made try to understand it let's illustrates how it's in fact used in practice.

These are a little difficult sometimes and it can take many practice to obtain good at these so don't feel too bad if you don't pick on this stuff right away.  We will look at a couple of examples that work out fairly easily.


Related Discussions:- The definition of the limit

Find the maximum expected holdings, Problem: A person has 3 units of mo...

Problem: A person has 3 units of money available for investment in a business opportunity that matures in 1 year. The opportunity is risky in that the return is either double o

Give an examples of simplifying fractions , Give an examples of Simplifying...

Give an examples of Simplifying Fractions ? When a fraction cannot be reduced any further, the fraction is in its simplest form. To reduce a fraction to its simplest form,

Write down a game each for teach maths to children, Write down a game each ...

Write down a game each to teach children i) multiplication, ii) what a circle is, iii) estimation skills. Also say what you expect the child to know before you try to t

Example of log rules, Example of Log Rules: Y = ½ gt 2 where g = 32 ...

Example of Log Rules: Y = ½ gt 2 where g = 32 Solution: y = 16 t 2 Find y for t = 10 using logs. log y = log 10     (16 t 2 ) log 10 y = log 10 16 + log 10

Montel''s Theorem, In 5 pages, please try to prove Theorem 3 based on Monte...

In 5 pages, please try to prove Theorem 3 based on Montel''s Theorem. please use "Latex" Knuth Donald to write this paper. It is known that Theorem 3 on page 137 of the attached

Addition of unlike terms, In this case, the first point we have to re...

In this case, the first point we have to remember is that we do not get a single value when we add two or more terms which are unlike in nature. This certainly ob

Minimum and maximum values, Minimum and Maximum Values : Several applicati...

Minimum and Maximum Values : Several applications in this chapter will revolve around minimum & maximum values of a function.  Whereas we can all visualize the minimum & maximum v

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd