Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
The Definite Integral
If there exists an irregularly shaped curve, y = f(x) then there is no formula to find out the area under the curve between two points x = a and x = b on the horizontal axis. If this interval [a, b] is broken into 'n' subintervals [x1, x2], [x2, x3] ... [xn-1, xn] and rectangles are constructed in such a way that the height of each rectangle is equal to the smallest value of the function in the subinterval then the sum of the areas of the rectangles i.e. will approximate the actual area under the curve, where , is the difference between any two consecutive values of x. The smaller the value of the more rectangles can be created and the closer is the sum of the areas of the rectangles so formed, i.e. , to the actual area under the curve. If the number of subintervals increases, that is 'n' approaches infinity, each subinterval becomes infinitesmally small and the area under the curve can be expressed as
Figure 1
Figure 2
The area under the graph of a continuous function between two points on the horizontal axis, x = a and
x = b, can be best described by the definite integral of f(x) over the interval x = a to x = b. This is mathematically expressed as
a and b on the left hand side of the above expression are called the upper and lower limits of the integration. Unlike the indefinite integral which represents a family of functions as it includes an arbitrary constant, the definite integral is a real number which can be found out by using the =
Need help figuring perimeter and area.
6.3/o.21
Suppose you start saving today for a $55,000 down payment that you plan to make on a house in 7 years, assume that you make no deposits into the account after the initial deposit,
I have difficuties in working out those 3D trigomentry problems within teh shortest possible time. Are there any tricks to get through such problems as soon as possible?
Tangents with Polar Coordinates Here we now require to discuss some calculus topics in terms of polar coordinates. We will begin with finding tangent lines to polar curves.
Convert or Reduce Reduce 4,500 micrograms to grams
three towns are situated in such away that town B is 120 kilometers on a bearing of 030 degrees from town A. Town C is 210 kilometers on a bearing of 110 degrees from town A (a)ca
Twice a number increased by 11 is equal to 32 less than three times the number. Find out the number. Let x = the number. Now translate every part of the sentence. Twice a numb
how do we solve multiple optimal solution
sin((2n+1)180)
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd