The complexity ladder, Data Structure & Algorithms

Assignment Help:

The complexity Ladder:

  • T(n) = O(1). It is called constant growth. T(n) does not raise at all as a function of n, it is a constant. For illustration, array access has this characteristic. A[i] takes the identical time independent of the size of the array A.
  • T(n) = O(log2 (n)). It is called logarithmic growth. T(n) raise proportional to the base 2 logarithm of n. In fact, the base of logarithm does not matter. For instance, binary search has this characteristic.
  • T(n) = O(n). It is called linear growth. T(n) linearly grows with n. For instance, looping over all the elements into a one-dimensional array of n elements would be of the order of O(n).
  • T(n) = O(n log (n). It is called nlogn growth. T(n) raise proportional to n times the base 2 logarithm of n. Time complexity of Merge Sort contain this characteristic. Actually no sorting algorithm that employs comparison among elements can be faster than n log n.
  • T(n) = O(nk). It is called polynomial growth. T(n) raise proportional to the k-th power of n. We rarely assume algorithms which run in time O(nk) where k is bigger than 2 , since such algorithms are very slow and not practical. For instance, selection sort is an O(n2) algorithm.
  • T(n) = O(2n) It is called exponential growth. T(n) raise exponentially.

In computer science, Exponential growth is the most-danger growth pattern. Algorithms which grow this way are fundamentally useless for anything except for very small input size.

Table 1 compares several algorithms in terms of their complexities.

Table 2 compares the typical running time of algorithms of distinct orders.

The growth patterns above have been tabulated in order of enhancing size. That is,   

  O(1) <  O(log(n)) < O(n log(n)) < O(n2)  < O(n3), ... , O(2n).

Notation

Name

Example

O(1)

Constant

Constant growth. Does

 

 

not grow as a function

of n. For example, accessing array for one element A[i]

O(log n)

Logarithmic

Binary search

O(n)

Linear

Looping over n

elements, of an array of size n (normally).

O(n log n)

Sometimes called

"linearithmic"

Merge sort

O(n2)

Quadratic

Worst time case for

insertion sort, matrix multiplication

O(nc)

Polynomial,

sometimes

 

O(cn)

Exponential

 

O(n!)

Factorial

 

 

              Table 1: Comparison of several algorithms & their complexities

 

 

 

Array size

 

Logarithmic:

log2N

 

Linear: N

 

Quadratic: N2

 

Exponential:

2N

 

8

128

256

1000

100,000

 

3

7

8

10

17

 

8

128

256

1000

100,000

 

64

16,384

65,536

1 million

10 billion

 

256

3.4*1038

1.15*1077

1.07*10301

........

 


Related Discussions:- The complexity ladder

Non-recursive algorithm to traverse a tree in preorder, Write the non-recur...

Write the non-recursive algorithm to traverse a tree in preorder.    The Non- Recursive algorithm for preorder traversal is as follows: Initially  push NULL onto stack and

Algorithms, b) The user will roll two (six-sided) dices and the user will l...

b) The user will roll two (six-sided) dices and the user will lose the game if (s)he gets a value 1 on either any of the two dices & wins otherwise. Display a message to the user w

Merging, merging 4 sorted files containing 50 10 25 and 15 records will tak...

merging 4 sorted files containing 50 10 25 and 15 records will take time

Procedure to delete all terminal nodes of the tree, Q. Let a binary tree 'T...

Q. Let a binary tree 'T' be in memory. Write a procedure to delete all terminal nodes of the tree.       A n s . fun ction to Delete Terminal Nodes from Binary Tree

What are the things require to implement abstract data types, What are the ...

What are the things require to implement ADT Abstract data types are very useful for helping us understand the mathematical objects which we use in our computations but, of cou

Bayesian statistics question, Suppose that there is a Beta(2,2) prior distr...

Suppose that there is a Beta(2,2) prior distribution on the probability theta that a coin will yield a "head" when spun in a specified manner. The coin is independently spun 10 tim

Various passes of bubble sort, Q. Show the various passes of bubble sort on...

Q. Show the various passes of bubble sort on the unsorted given list 11, 15, 2, 13, 6           Ans: The given data is as follows:- Pass 1:-     11   15   2     13

The complexity of multiplying two matrices, The complexity of multiplying t...

The complexity of multiplying two matrices of order m*n and n*p is    mnp

Parallel implementation of the raytracer, You are supposed to do the follow...

You are supposed to do the following: Write a parallel implementation of the raytracer using pthreads. Measure and compare the execution times for (i) the sequential ver

Program for linear search, Program for Linear Search. Program: Linear S...

Program for Linear Search. Program: Linear Search /*Program for Linear Search*/ /*Header Files*/ #include #include /*Global Variables*/ int search; int

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd