The complexity ladder, Data Structure & Algorithms

Assignment Help:

The complexity Ladder:

  • T(n) = O(1). It is called constant growth. T(n) does not raise at all as a function of n, it is a constant. For illustration, array access has this characteristic. A[i] takes the identical time independent of the size of the array A.
  • T(n) = O(log2 (n)). It is called logarithmic growth. T(n) raise proportional to the base 2 logarithm of n. In fact, the base of logarithm does not matter. For instance, binary search has this characteristic.
  • T(n) = O(n). It is called linear growth. T(n) linearly grows with n. For instance, looping over all the elements into a one-dimensional array of n elements would be of the order of O(n).
  • T(n) = O(n log (n). It is called nlogn growth. T(n) raise proportional to n times the base 2 logarithm of n. Time complexity of Merge Sort contain this characteristic. Actually no sorting algorithm that employs comparison among elements can be faster than n log n.
  • T(n) = O(nk). It is called polynomial growth. T(n) raise proportional to the k-th power of n. We rarely assume algorithms which run in time O(nk) where k is bigger than 2 , since such algorithms are very slow and not practical. For instance, selection sort is an O(n2) algorithm.
  • T(n) = O(2n) It is called exponential growth. T(n) raise exponentially.

In computer science, Exponential growth is the most-danger growth pattern. Algorithms which grow this way are fundamentally useless for anything except for very small input size.

Table 1 compares several algorithms in terms of their complexities.

Table 2 compares the typical running time of algorithms of distinct orders.

The growth patterns above have been tabulated in order of enhancing size. That is,   

  O(1) <  O(log(n)) < O(n log(n)) < O(n2)  < O(n3), ... , O(2n).

Notation

Name

Example

O(1)

Constant

Constant growth. Does

 

 

not grow as a function

of n. For example, accessing array for one element A[i]

O(log n)

Logarithmic

Binary search

O(n)

Linear

Looping over n

elements, of an array of size n (normally).

O(n log n)

Sometimes called

"linearithmic"

Merge sort

O(n2)

Quadratic

Worst time case for

insertion sort, matrix multiplication

O(nc)

Polynomial,

sometimes

 

O(cn)

Exponential

 

O(n!)

Factorial

 

 

              Table 1: Comparison of several algorithms & their complexities

 

 

 

Array size

 

Logarithmic:

log2N

 

Linear: N

 

Quadratic: N2

 

Exponential:

2N

 

8

128

256

1000

100,000

 

3

7

8

10

17

 

8

128

256

1000

100,000

 

64

16,384

65,536

1 million

10 billion

 

256

3.4*1038

1.15*1077

1.07*10301

........

 


Related Discussions:- The complexity ladder

A binary tree in which levels except possibly the last, A binary tree in wh...

A binary tree in which if all its levels except possibly the last, have the maximum number of nodes and all the nodes at the last level appear as far left as possible, is called as

Data manipulation, perform the following length operation LENGTH("welcome t...

perform the following length operation LENGTH("welcome to ICA")=

Avl trees, An AVL tree is a binary search tree that has the given propertie...

An AVL tree is a binary search tree that has the given properties: The sub-tree of each of the node differs in height through at most one. Each sub tree will be an AVL tre

Example of telephone directory, A telephone directory having n = 10 records...

A telephone directory having n = 10 records and Name field as key. Let us assume that the names are stored in array 'm' i.e. m(0) to m(9) and the search has to be made for name "X"

Frequency counts for all statements, Evaluate the frequency counts for all ...

Evaluate the frequency counts for all statements in the following given program segment. for (i=1; i ≤ n; i ++) for (j = 1; j ≤ i; j++) for (k =1; k ≤ j; k++) y ++;

Signals, How does cpu''s part tming and controls generate and controls sign...

How does cpu''s part tming and controls generate and controls signls in computer?

Applications of linear and binary search, The searching method are applicab...

The searching method are applicable to a number of places in current's world, may it be Internet, search engines, text pattern matching, on line enquiry, finding a record from data

Define abstract data type & column major ordering for arrays, Q1. Define th...

Q1. Define the following terms: (i) Abstract data type. (ii) Column major ordering for arrays. (iii)  Row major ordering for arrays. Q2. Explain the following: (i) A

Algorithm to insert a node in between any two nodes, Q. Write down an algor...

Q. Write down an algorithm to insert a node in between any two nodes in a linked list         Ans. Insertion of a the node after the given element of the listis as follows

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd