The complexity ladder, Data Structure & Algorithms

Assignment Help:

The complexity Ladder:

  • T(n) = O(1). It is called constant growth. T(n) does not raise at all as a function of n, it is a constant. For illustration, array access has this characteristic. A[i] takes the identical time independent of the size of the array A.
  • T(n) = O(log2 (n)). It is called logarithmic growth. T(n) raise proportional to the base 2 logarithm of n. In fact, the base of logarithm does not matter. For instance, binary search has this characteristic.
  • T(n) = O(n). It is called linear growth. T(n) linearly grows with n. For instance, looping over all the elements into a one-dimensional array of n elements would be of the order of O(n).
  • T(n) = O(n log (n). It is called nlogn growth. T(n) raise proportional to n times the base 2 logarithm of n. Time complexity of Merge Sort contain this characteristic. Actually no sorting algorithm that employs comparison among elements can be faster than n log n.
  • T(n) = O(nk). It is called polynomial growth. T(n) raise proportional to the k-th power of n. We rarely assume algorithms which run in time O(nk) where k is bigger than 2 , since such algorithms are very slow and not practical. For instance, selection sort is an O(n2) algorithm.
  • T(n) = O(2n) It is called exponential growth. T(n) raise exponentially.

In computer science, Exponential growth is the most-danger growth pattern. Algorithms which grow this way are fundamentally useless for anything except for very small input size.

Table 1 compares several algorithms in terms of their complexities.

Table 2 compares the typical running time of algorithms of distinct orders.

The growth patterns above have been tabulated in order of enhancing size. That is,   

  O(1) <  O(log(n)) < O(n log(n)) < O(n2)  < O(n3), ... , O(2n).

Notation

Name

Example

O(1)

Constant

Constant growth. Does

 

 

not grow as a function

of n. For example, accessing array for one element A[i]

O(log n)

Logarithmic

Binary search

O(n)

Linear

Looping over n

elements, of an array of size n (normally).

O(n log n)

Sometimes called

"linearithmic"

Merge sort

O(n2)

Quadratic

Worst time case for

insertion sort, matrix multiplication

O(nc)

Polynomial,

sometimes

 

O(cn)

Exponential

 

O(n!)

Factorial

 

 

              Table 1: Comparison of several algorithms & their complexities

 

 

 

Array size

 

Logarithmic:

log2N

 

Linear: N

 

Quadratic: N2

 

Exponential:

2N

 

8

128

256

1000

100,000

 

3

7

8

10

17

 

8

128

256

1000

100,000

 

64

16,384

65,536

1 million

10 billion

 

256

3.4*1038

1.15*1077

1.07*10301

........

 


Related Discussions:- The complexity ladder

In-order traversal, Write steps for algorithm for In-order Traversal Th...

Write steps for algorithm for In-order Traversal This process when implemented iteratively also needs a stack and a Boolean to prevent the execution from traversing any portion

Linked list implementation of a queue, The fundamental element of linked li...

The fundamental element of linked list is a "record" structure of at least two fields. The object which holds the data & refers to the next element into the list is called a node .

Which sorting algorithms not have running time of o (n2), Which sorting al...

Which sorting algorithms does not have a worst case running time of  O (n 2 ) ? Merge sort

Polynomials - represented by using arrays, /* the program accepts two polyn...

/* the program accepts two polynomials as a input & prints the resultant polynomial because of the addition of input polynomials*/ #include void main() { int poly1[6][

Sort 5, The number of interchanges needed to sort 5, 1, 6, 2 4 in ascending...

The number of interchanges needed to sort 5, 1, 6, 2 4 in ascending order using Bubble Sort is 5

System defined data types, System defined data types:- These are data t...

System defined data types:- These are data types that have been defined by the compiler of any program. The C language contains 4 basic data types:- Int, float,  char and doubl

Notes, Ask question #Minimum 10000 words accepted#

Ask question #Minimum 10000 words accepted#

linear-expected-time algorithm, Implement a linear-expected-time algorithm...

Implement a linear-expected-time algorithm for selecting the k th smallest element Algorithm description 1. If |S| = 1, then k = 1 and return the element in S as the an

Write an algorithm to input number of passengers travelling, There are ten ...

There are ten stations on a railway line: Train travels in both directions (i.e. from 1 to 10 and then from 10 to 1).  Fare between each station is $2. A passenger input

Calculation of time complexity, Example: Assume the following of code: ...

Example: Assume the following of code: x = 4y + 3 z = z + 1 p = 1 As we have been seen, x, y, z and p are all scalar variables & the running time is constant irrespective

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd