The complexity ladder, Data Structure & Algorithms

Assignment Help:

The complexity Ladder:

  • T(n) = O(1). It is called constant growth. T(n) does not raise at all as a function of n, it is a constant. For illustration, array access has this characteristic. A[i] takes the identical time independent of the size of the array A.
  • T(n) = O(log2 (n)). It is called logarithmic growth. T(n) raise proportional to the base 2 logarithm of n. In fact, the base of logarithm does not matter. For instance, binary search has this characteristic.
  • T(n) = O(n). It is called linear growth. T(n) linearly grows with n. For instance, looping over all the elements into a one-dimensional array of n elements would be of the order of O(n).
  • T(n) = O(n log (n). It is called nlogn growth. T(n) raise proportional to n times the base 2 logarithm of n. Time complexity of Merge Sort contain this characteristic. Actually no sorting algorithm that employs comparison among elements can be faster than n log n.
  • T(n) = O(nk). It is called polynomial growth. T(n) raise proportional to the k-th power of n. We rarely assume algorithms which run in time O(nk) where k is bigger than 2 , since such algorithms are very slow and not practical. For instance, selection sort is an O(n2) algorithm.
  • T(n) = O(2n) It is called exponential growth. T(n) raise exponentially.

In computer science, Exponential growth is the most-danger growth pattern. Algorithms which grow this way are fundamentally useless for anything except for very small input size.

Table 1 compares several algorithms in terms of their complexities.

Table 2 compares the typical running time of algorithms of distinct orders.

The growth patterns above have been tabulated in order of enhancing size. That is,   

  O(1) <  O(log(n)) < O(n log(n)) < O(n2)  < O(n3), ... , O(2n).

Notation

Name

Example

O(1)

Constant

Constant growth. Does

 

 

not grow as a function

of n. For example, accessing array for one element A[i]

O(log n)

Logarithmic

Binary search

O(n)

Linear

Looping over n

elements, of an array of size n (normally).

O(n log n)

Sometimes called

"linearithmic"

Merge sort

O(n2)

Quadratic

Worst time case for

insertion sort, matrix multiplication

O(nc)

Polynomial,

sometimes

 

O(cn)

Exponential

 

O(n!)

Factorial

 

 

              Table 1: Comparison of several algorithms & their complexities

 

 

 

Array size

 

Logarithmic:

log2N

 

Linear: N

 

Quadratic: N2

 

Exponential:

2N

 

8

128

256

1000

100,000

 

3

7

8

10

17

 

8

128

256

1000

100,000

 

64

16,384

65,536

1 million

10 billion

 

256

3.4*1038

1.15*1077

1.07*10301

........

 


Related Discussions:- The complexity ladder

Explain insertion procedure into a b-tree, Ans: I nsertion into the B...

Ans: I nsertion into the B-tree: 1.  First search is made for the place where the new record must be positioned. As soon as the keys are inserted, they are sorted into th

Insertion sort, It is a naturally occurring sorting method exemplified thro...

It is a naturally occurring sorting method exemplified through a card player arranging the cards dealt to him. He picks up the cards like they are dealt & added them into the neede

Explain the term - branching, Explain the term - Branching There are t...

Explain the term - Branching There are two common ways of branching: case of ..... otherwise ...... endcase  if ..... then ..... else ..... endif   case of

Enumerate the types in ruby, Enumerate the Types in Ruby Ruby is a pure...

Enumerate the Types in Ruby Ruby is a pure object-oriented language, meaning that all types in Ruby are classes, and each value in a Ruby program is an instance of a class. Thi

Heights of 500 students `Algorithms`, Write an algorithm, using a flowchart...

Write an algorithm, using a flowchart, which inputs the heights of all 500 students and outputs the height of the tallest person and the shortest p erson in the school.

Flowchart, create a flowchart that displays the students average score for ...

create a flowchart that displays the students average score for these quizzes

Small program on Algorithms , Objective The goal of this project is to ext...

Objective The goal of this project is to extend and implement an algorithm presented in the course and to apply notions introduced by the course to this program/algorithm. The ass

Queue, algorithm for insertion in a queue using pointers

algorithm for insertion in a queue using pointers

Objectives of lists, After going through this unit, you will be able to: ...

After going through this unit, you will be able to: • define and declare Lists; • understand the terminology of Singly linked lists; • understand the terminology of Doubly

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd