The complexity ladder, Data Structure & Algorithms

Assignment Help:

The complexity Ladder:

  • T(n) = O(1). It is called constant growth. T(n) does not raise at all as a function of n, it is a constant. For illustration, array access has this characteristic. A[i] takes the identical time independent of the size of the array A.
  • T(n) = O(log2 (n)). It is called logarithmic growth. T(n) raise proportional to the base 2 logarithm of n. In fact, the base of logarithm does not matter. For instance, binary search has this characteristic.
  • T(n) = O(n). It is called linear growth. T(n) linearly grows with n. For instance, looping over all the elements into a one-dimensional array of n elements would be of the order of O(n).
  • T(n) = O(n log (n). It is called nlogn growth. T(n) raise proportional to n times the base 2 logarithm of n. Time complexity of Merge Sort contain this characteristic. Actually no sorting algorithm that employs comparison among elements can be faster than n log n.
  • T(n) = O(nk). It is called polynomial growth. T(n) raise proportional to the k-th power of n. We rarely assume algorithms which run in time O(nk) where k is bigger than 2 , since such algorithms are very slow and not practical. For instance, selection sort is an O(n2) algorithm.
  • T(n) = O(2n) It is called exponential growth. T(n) raise exponentially.

In computer science, Exponential growth is the most-danger growth pattern. Algorithms which grow this way are fundamentally useless for anything except for very small input size.

Table 1 compares several algorithms in terms of their complexities.

Table 2 compares the typical running time of algorithms of distinct orders.

The growth patterns above have been tabulated in order of enhancing size. That is,   

  O(1) <  O(log(n)) < O(n log(n)) < O(n2)  < O(n3), ... , O(2n).

Notation

Name

Example

O(1)

Constant

Constant growth. Does

 

 

not grow as a function

of n. For example, accessing array for one element A[i]

O(log n)

Logarithmic

Binary search

O(n)

Linear

Looping over n

elements, of an array of size n (normally).

O(n log n)

Sometimes called

"linearithmic"

Merge sort

O(n2)

Quadratic

Worst time case for

insertion sort, matrix multiplication

O(nc)

Polynomial,

sometimes

 

O(cn)

Exponential

 

O(n!)

Factorial

 

 

              Table 1: Comparison of several algorithms & their complexities

 

 

 

Array size

 

Logarithmic:

log2N

 

Linear: N

 

Quadratic: N2

 

Exponential:

2N

 

8

128

256

1000

100,000

 

3

7

8

10

17

 

8

128

256

1000

100,000

 

64

16,384

65,536

1 million

10 billion

 

256

3.4*1038

1.15*1077

1.07*10301

........

 


Related Discussions:- The complexity ladder

Data structures, I am looking for assignment help on the topic Data Structu...

I am looking for assignment help on the topic Data Structures. It would be great if anyone help me.

Preliminaries, Think of a program you have used that is unacceptably slow. ...

Think of a program you have used that is unacceptably slow. Identify the specific operations that make the program slow. Identify other basic operations that the program performs q

Algorithm, what algorithms can i use for the above title in my project desi...

what algorithms can i use for the above title in my project desing and implmentation of road transport booking system

Write an algorithm to find outputs number of cars, A company is carrying ou...

A company is carrying out a survey by observing traffic at a road junction. Every time a car, bus or lorry passed by road junction it was noted down. 10 000 vehicles were counted d

Explain in detail about the ruby arrays, Explain in detail about the Ruby a...

Explain in detail about the Ruby arrays Ruby arrays have many interesting and powerful methods. Besides indexing operations which go well beyond those discussed above, arrays h

Programs, Develop a program that accepts the car registration( hint: LEA 43...

Develop a program that accepts the car registration( hint: LEA 43242010)

Implement an open hash table, In a chained hash table, each table entry is ...

In a chained hash table, each table entry is a pointer to a collection of elements. It can be any collection that supports insert, remove, and find, but is commonly a linked list.

Define techniques of dry running of flowcharts, Explain the term- Dry runni...

Explain the term- Dry running of flowcharts  Dry running of flowcharts is essentially a technique to: Determine output for a known set of data to check it carries out th

Sequential files, In this section, we will discuss about Sequential file or...

In this section, we will discuss about Sequential file organization. Sequential files have data records stored in a particular sequence. A sequentially organized file might be stor

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd