The complexity ladder, Data Structure & Algorithms

Assignment Help:

The complexity Ladder:

  • T(n) = O(1). It is called constant growth. T(n) does not raise at all as a function of n, it is a constant. For illustration, array access has this characteristic. A[i] takes the identical time independent of the size of the array A.
  • T(n) = O(log2 (n)). It is called logarithmic growth. T(n) raise proportional to the base 2 logarithm of n. In fact, the base of logarithm does not matter. For instance, binary search has this characteristic.
  • T(n) = O(n). It is called linear growth. T(n) linearly grows with n. For instance, looping over all the elements into a one-dimensional array of n elements would be of the order of O(n).
  • T(n) = O(n log (n). It is called nlogn growth. T(n) raise proportional to n times the base 2 logarithm of n. Time complexity of Merge Sort contain this characteristic. Actually no sorting algorithm that employs comparison among elements can be faster than n log n.
  • T(n) = O(nk). It is called polynomial growth. T(n) raise proportional to the k-th power of n. We rarely assume algorithms which run in time O(nk) where k is bigger than 2 , since such algorithms are very slow and not practical. For instance, selection sort is an O(n2) algorithm.
  • T(n) = O(2n) It is called exponential growth. T(n) raise exponentially.

In computer science, Exponential growth is the most-danger growth pattern. Algorithms which grow this way are fundamentally useless for anything except for very small input size.

Table 1 compares several algorithms in terms of their complexities.

Table 2 compares the typical running time of algorithms of distinct orders.

The growth patterns above have been tabulated in order of enhancing size. That is,   

  O(1) <  O(log(n)) < O(n log(n)) < O(n2)  < O(n3), ... , O(2n).

Notation

Name

Example

O(1)

Constant

Constant growth. Does

 

 

not grow as a function

of n. For example, accessing array for one element A[i]

O(log n)

Logarithmic

Binary search

O(n)

Linear

Looping over n

elements, of an array of size n (normally).

O(n log n)

Sometimes called

"linearithmic"

Merge sort

O(n2)

Quadratic

Worst time case for

insertion sort, matrix multiplication

O(nc)

Polynomial,

sometimes

 

O(cn)

Exponential

 

O(n!)

Factorial

 

 

              Table 1: Comparison of several algorithms & their complexities

 

 

 

Array size

 

Logarithmic:

log2N

 

Linear: N

 

Quadratic: N2

 

Exponential:

2N

 

8

128

256

1000

100,000

 

3

7

8

10

17

 

8

128

256

1000

100,000

 

64

16,384

65,536

1 million

10 billion

 

256

3.4*1038

1.15*1077

1.07*10301

........

 


Related Discussions:- The complexity ladder

Physical database design and sql queries, In this part, students are allowe...

In this part, students are allowed to implement the following simplifications in their table and data design. o Availability for the beauty therapists don't have to be considere

Define tree ?, A tree is a non-empty set one component of which is designat...

A tree is a non-empty set one component of which is designated the root of the tree while the remaining components are partitioned into non-empty groups each of which is a subtree

What is assertions and abstract data types, Assertions and Abstract Data Ty...

Assertions and Abstract Data Types Even though we have defined assertions in terms of programs, notion can be extended to abstract data types (which are mathematical entities).

Representation of records, Records are mapped onto a computer store by simp...

Records are mapped onto a computer store by simply juxtaposing their elements. The address of a component (field) r relative to the origin address of the record r is named the fiel

Explain th term input and output- pseudocode, Explain th term input and ou...

Explain th term input and output-  Pseudocode Input and output indicated by the use of terms input number, print total, output total, print "result is" x and so on.

find shortest path from a to z using dijkstra''s algorithm., Q.  In the gi...

Q.  In the given figure find the shortest path from A to Z using Dijkstra's Algorithm.    Ans: 1.  P=φ;  T={A,B,C,D,E,F,G,H,I,J,K,L,M,Z} Let L(A)

State phong shading, Phong Shading Phong shading too is based on interp...

Phong Shading Phong shading too is based on interpolation, but instead of interpolating the colour value, it is the normal vector, which is interpolated for each point and a co

How many nodes in a tree have no ancestor, How many nodes in a tree have no...

How many nodes in a tree have no ancestors 1 node in atree have no ancestors.

Kruskal algorithm for minimum spanning, Implementations of Kruskal's algori...

Implementations of Kruskal's algorithm for Minimum Spanning Tree. You are implementing Kruskal's algorithm here. Please implement the array-based Union-Find data structure.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd