The complexity ladder, Data Structure & Algorithms

Assignment Help:

The complexity Ladder:

  • T(n) = O(1). It is called constant growth. T(n) does not raise at all as a function of n, it is a constant. For illustration, array access has this characteristic. A[i] takes the identical time independent of the size of the array A.
  • T(n) = O(log2 (n)). It is called logarithmic growth. T(n) raise proportional to the base 2 logarithm of n. In fact, the base of logarithm does not matter. For instance, binary search has this characteristic.
  • T(n) = O(n). It is called linear growth. T(n) linearly grows with n. For instance, looping over all the elements into a one-dimensional array of n elements would be of the order of O(n).
  • T(n) = O(n log (n). It is called nlogn growth. T(n) raise proportional to n times the base 2 logarithm of n. Time complexity of Merge Sort contain this characteristic. Actually no sorting algorithm that employs comparison among elements can be faster than n log n.
  • T(n) = O(nk). It is called polynomial growth. T(n) raise proportional to the k-th power of n. We rarely assume algorithms which run in time O(nk) where k is bigger than 2 , since such algorithms are very slow and not practical. For instance, selection sort is an O(n2) algorithm.
  • T(n) = O(2n) It is called exponential growth. T(n) raise exponentially.

In computer science, Exponential growth is the most-danger growth pattern. Algorithms which grow this way are fundamentally useless for anything except for very small input size.

Table 1 compares several algorithms in terms of their complexities.

Table 2 compares the typical running time of algorithms of distinct orders.

The growth patterns above have been tabulated in order of enhancing size. That is,   

  O(1) <  O(log(n)) < O(n log(n)) < O(n2)  < O(n3), ... , O(2n).

Notation

Name

Example

O(1)

Constant

Constant growth. Does

 

 

not grow as a function

of n. For example, accessing array for one element A[i]

O(log n)

Logarithmic

Binary search

O(n)

Linear

Looping over n

elements, of an array of size n (normally).

O(n log n)

Sometimes called

"linearithmic"

Merge sort

O(n2)

Quadratic

Worst time case for

insertion sort, matrix multiplication

O(nc)

Polynomial,

sometimes

 

O(cn)

Exponential

 

O(n!)

Factorial

 

 

              Table 1: Comparison of several algorithms & their complexities

 

 

 

Array size

 

Logarithmic:

log2N

 

Linear: N

 

Quadratic: N2

 

Exponential:

2N

 

8

128

256

1000

100,000

 

3

7

8

10

17

 

8

128

256

1000

100,000

 

64

16,384

65,536

1 million

10 billion

 

256

3.4*1038

1.15*1077

1.07*10301

........

 


Related Discussions:- The complexity ladder

Lists, In the previous unit, we have discussed arrays. Arrays are data stru...

In the previous unit, we have discussed arrays. Arrays are data structures of fixed size. Insertion and deletion involves reshuffling of array elements. Thus, array manipulation

Merge sorting, ESO207: Programming Assignment 1 Due on 6 Sept, 2015. To be ...

ESO207: Programming Assignment 1 Due on 6 Sept, 2015. To be submitted online. Problem In this assignment you are required to implement k-way Merge Sort algorithm. In this version p

Whether a binary tree is a binary search tree or not, Write an algorithm to...

Write an algorithm to test whether a Binary Tree is a Binary Search Tree. The algorithm to test whether a Binary tree is as Binary Search tree is as follows: bstree(*tree) {

Er diagram, Ask queConsider the following functional dependencies: Applican...

Ask queConsider the following functional dependencies: Applicant_ID -> Applicant_Name Applicant_ID -> Applicant_Address Position_ID -> Positoin_Title Position_ID -> Date_Position_O

Explain the scan-line algorithm, Explain the Scan-Line Algorithm This i...

Explain the Scan-Line Algorithm This image-space method for removing hidden surfaces is an extension of the scan-line algorithm for filling polygon interiors. Instead of fillin

Travelling salesman problem, Example 3: Travelling Salesman problem G...

Example 3: Travelling Salesman problem Given: n associated cities and distances among them Find: tour of minimum length that visits all of city. Solutions: How several

Red-black trees, A Red-Black Tree (RBT) is a type of Binary Search tree wit...

A Red-Black Tree (RBT) is a type of Binary Search tree with one extra bit of storage per node, i.e. its color that can either be red or black. Now the nodes can have any of the col

Queue, 1. Show the effect of each of the following operations on queue q. A...

1. Show the effect of each of the following operations on queue q. Assume that y (type Character) contains the character ‘&’. What are the final values of x and success (type boole

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd