The complexity ladder, Data Structure & Algorithms

Assignment Help:

The complexity Ladder:

  • T(n) = O(1). It is called constant growth. T(n) does not raise at all as a function of n, it is a constant. For illustration, array access has this characteristic. A[i] takes the identical time independent of the size of the array A.
  • T(n) = O(log2 (n)). It is called logarithmic growth. T(n) raise proportional to the base 2 logarithm of n. In fact, the base of logarithm does not matter. For instance, binary search has this characteristic.
  • T(n) = O(n). It is called linear growth. T(n) linearly grows with n. For instance, looping over all the elements into a one-dimensional array of n elements would be of the order of O(n).
  • T(n) = O(n log (n). It is called nlogn growth. T(n) raise proportional to n times the base 2 logarithm of n. Time complexity of Merge Sort contain this characteristic. Actually no sorting algorithm that employs comparison among elements can be faster than n log n.
  • T(n) = O(nk). It is called polynomial growth. T(n) raise proportional to the k-th power of n. We rarely assume algorithms which run in time O(nk) where k is bigger than 2 , since such algorithms are very slow and not practical. For instance, selection sort is an O(n2) algorithm.
  • T(n) = O(2n) It is called exponential growth. T(n) raise exponentially.

In computer science, Exponential growth is the most-danger growth pattern. Algorithms which grow this way are fundamentally useless for anything except for very small input size.

Table 1 compares several algorithms in terms of their complexities.

Table 2 compares the typical running time of algorithms of distinct orders.

The growth patterns above have been tabulated in order of enhancing size. That is,   

  O(1) <  O(log(n)) < O(n log(n)) < O(n2)  < O(n3), ... , O(2n).

Notation

Name

Example

O(1)

Constant

Constant growth. Does

 

 

not grow as a function

of n. For example, accessing array for one element A[i]

O(log n)

Logarithmic

Binary search

O(n)

Linear

Looping over n

elements, of an array of size n (normally).

O(n log n)

Sometimes called

"linearithmic"

Merge sort

O(n2)

Quadratic

Worst time case for

insertion sort, matrix multiplication

O(nc)

Polynomial,

sometimes

 

O(cn)

Exponential

 

O(n!)

Factorial

 

 

              Table 1: Comparison of several algorithms & their complexities

 

 

 

Array size

 

Logarithmic:

log2N

 

Linear: N

 

Quadratic: N2

 

Exponential:

2N

 

8

128

256

1000

100,000

 

3

7

8

10

17

 

8

128

256

1000

100,000

 

64

16,384

65,536

1 million

10 billion

 

256

3.4*1038

1.15*1077

1.07*10301

........

 


Related Discussions:- The complexity ladder

Linked list, Write a program for reversing the Linked list

Write a program for reversing the Linked list

Representation of a polynomial with a singly linked list, List areutilized ...

List areutilized to maintainPOLYNOMIALS in the memory. For example, we have a functionf(x)= 7x 5 + 9x 4   - 6x³ + 3x². Figure depicts the representation of a Polynomial by means o

Stack, using a program flowchart design a program to illustrate pop and pus...

using a program flowchart design a program to illustrate pop and push operation

The two famous methods for traversing, The two famous methods for traversin...

The two famous methods for traversing are:- a) Depth first traversal b) Breadth first

Elaborate the symbols of abstract data type, Elaborate the symbols of abstr...

Elaborate the symbols of abstract data type length(a)-returns the number of characters in symbol a. capitalize(a)-returns the symbol generated from a by making its first cha

Postfix expression, Ask question Write an algorithm for the evaluation of a...

Ask question Write an algorithm for the evaluation of a postfix expression using a stack#Minimum 100 words accepted#

Linked list implementation of a dequeue, Double ended queues are implemente...

Double ended queues are implemented along doubly linked lists. A doubly link list can traverse in both of the directions as it contain two pointers namely left pointers and righ

Explain the theory of computational complexity, Explain the theory of compu...

Explain the theory of computational complexity A  problem's  intractability  remains  the  similar  for  all  principal  models  of   computations    and   all reasonable inpu

Algorithm for linear search, Here,  m represents the unordered array of ele...

Here,  m represents the unordered array of elements n  represents number of elements in the array and el  represents the value to be searched in the list Sep 1: [Initialize]

Enumerate about the carrier set members, Enumerate about the carrier set me...

Enumerate about the carrier set members Ruby is written in C, so carrier set members (which is, individual symbols) are implemented as fixed-size arrays of characters (which is

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd