The complexity ladder, Data Structure & Algorithms

Assignment Help:

The complexity Ladder:

  • T(n) = O(1). It is called constant growth. T(n) does not raise at all as a function of n, it is a constant. For illustration, array access has this characteristic. A[i] takes the identical time independent of the size of the array A.
  • T(n) = O(log2 (n)). It is called logarithmic growth. T(n) raise proportional to the base 2 logarithm of n. In fact, the base of logarithm does not matter. For instance, binary search has this characteristic.
  • T(n) = O(n). It is called linear growth. T(n) linearly grows with n. For instance, looping over all the elements into a one-dimensional array of n elements would be of the order of O(n).
  • T(n) = O(n log (n). It is called nlogn growth. T(n) raise proportional to n times the base 2 logarithm of n. Time complexity of Merge Sort contain this characteristic. Actually no sorting algorithm that employs comparison among elements can be faster than n log n.
  • T(n) = O(nk). It is called polynomial growth. T(n) raise proportional to the k-th power of n. We rarely assume algorithms which run in time O(nk) where k is bigger than 2 , since such algorithms are very slow and not practical. For instance, selection sort is an O(n2) algorithm.
  • T(n) = O(2n) It is called exponential growth. T(n) raise exponentially.

In computer science, Exponential growth is the most-danger growth pattern. Algorithms which grow this way are fundamentally useless for anything except for very small input size.

Table 1 compares several algorithms in terms of their complexities.

Table 2 compares the typical running time of algorithms of distinct orders.

The growth patterns above have been tabulated in order of enhancing size. That is,   

  O(1) <  O(log(n)) < O(n log(n)) < O(n2)  < O(n3), ... , O(2n).

Notation

Name

Example

O(1)

Constant

Constant growth. Does

 

 

not grow as a function

of n. For example, accessing array for one element A[i]

O(log n)

Logarithmic

Binary search

O(n)

Linear

Looping over n

elements, of an array of size n (normally).

O(n log n)

Sometimes called

"linearithmic"

Merge sort

O(n2)

Quadratic

Worst time case for

insertion sort, matrix multiplication

O(nc)

Polynomial,

sometimes

 

O(cn)

Exponential

 

O(n!)

Factorial

 

 

              Table 1: Comparison of several algorithms & their complexities

 

 

 

Array size

 

Logarithmic:

log2N

 

Linear: N

 

Quadratic: N2

 

Exponential:

2N

 

8

128

256

1000

100,000

 

3

7

8

10

17

 

8

128

256

1000

100,000

 

64

16,384

65,536

1 million

10 billion

 

256

3.4*1038

1.15*1077

1.07*10301

........

 


Related Discussions:- The complexity ladder

Two-dimensional array, Two-dimensional array is shown in memory in followin...

Two-dimensional array is shown in memory in following two ways:  1.  Row major representation: To achieve this linear representation, the first row of the array is stored in th

Linked list, how to creat atm project by using linked list?

how to creat atm project by using linked list?

All pairs shortest paths algorithm, In the last section, we discussed regar...

In the last section, we discussed regarding shortest path algorithm that starts with a single source and determines shortest path to all vertices in the graph. In this section, we

Traversing a graph, two standards ways of traversing a graph in data struc...

two standards ways of traversing a graph in data structure

#title.structured programming, what do you understand by structured program...

what do you understand by structured programming?explain with eg. top down and bottem up programming technique

What is a container taxonomy, What is A Container Taxonomy It's useful ...

What is A Container Taxonomy It's useful to place containers in a taxonomy to help understand their relationships to one another and as a basis for implementation using a class

Hash clash, Q. What do you understand by the term by hash clash? Explain in...

Q. What do you understand by the term by hash clash? Explain in detail any one method to resolve the hash collisions.

Binary search, Explain binary search with an example

Explain binary search with an example

What are the advantages of using assertions, Using Assertions When writ...

Using Assertions When writing code, programmer must state pre- and subtle post conditions for public operations, state class invariants and insert unreachable code assertions a

Complexity classes, Complexity classes All decision problems fall in se...

Complexity classes All decision problems fall in sets of comparable complexity, called as complexity classes. The complexity class P is the set of decision problems which ca

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd