The complexity ladder, Data Structure & Algorithms

Assignment Help:

The complexity Ladder:

  • T(n) = O(1). It is called constant growth. T(n) does not raise at all as a function of n, it is a constant. For illustration, array access has this characteristic. A[i] takes the identical time independent of the size of the array A.
  • T(n) = O(log2 (n)). It is called logarithmic growth. T(n) raise proportional to the base 2 logarithm of n. In fact, the base of logarithm does not matter. For instance, binary search has this characteristic.
  • T(n) = O(n). It is called linear growth. T(n) linearly grows with n. For instance, looping over all the elements into a one-dimensional array of n elements would be of the order of O(n).
  • T(n) = O(n log (n). It is called nlogn growth. T(n) raise proportional to n times the base 2 logarithm of n. Time complexity of Merge Sort contain this characteristic. Actually no sorting algorithm that employs comparison among elements can be faster than n log n.
  • T(n) = O(nk). It is called polynomial growth. T(n) raise proportional to the k-th power of n. We rarely assume algorithms which run in time O(nk) where k is bigger than 2 , since such algorithms are very slow and not practical. For instance, selection sort is an O(n2) algorithm.
  • T(n) = O(2n) It is called exponential growth. T(n) raise exponentially.

In computer science, Exponential growth is the most-danger growth pattern. Algorithms which grow this way are fundamentally useless for anything except for very small input size.

Table 1 compares several algorithms in terms of their complexities.

Table 2 compares the typical running time of algorithms of distinct orders.

The growth patterns above have been tabulated in order of enhancing size. That is,   

  O(1) <  O(log(n)) < O(n log(n)) < O(n2)  < O(n3), ... , O(2n).

Notation

Name

Example

O(1)

Constant

Constant growth. Does

 

 

not grow as a function

of n. For example, accessing array for one element A[i]

O(log n)

Logarithmic

Binary search

O(n)

Linear

Looping over n

elements, of an array of size n (normally).

O(n log n)

Sometimes called

"linearithmic"

Merge sort

O(n2)

Quadratic

Worst time case for

insertion sort, matrix multiplication

O(nc)

Polynomial,

sometimes

 

O(cn)

Exponential

 

O(n!)

Factorial

 

 

              Table 1: Comparison of several algorithms & their complexities

 

 

 

Array size

 

Logarithmic:

log2N

 

Linear: N

 

Quadratic: N2

 

Exponential:

2N

 

8

128

256

1000

100,000

 

3

7

8

10

17

 

8

128

256

1000

100,000

 

64

16,384

65,536

1 million

10 billion

 

256

3.4*1038

1.15*1077

1.07*10301

........

 


Related Discussions:- The complexity ladder

Develop a material requirements plan, The below figure illustrates the BOM ...

The below figure illustrates the BOM (Bill of Materials) for product A. The MPS (Material requirements Planning) start row in the master production schedule for product A calls for

Java code and algorythem, Suppose that you want to develop a program that a...

Suppose that you want to develop a program that accepts a postfix expression and asks values for variables in the expression. Then you need to calculate the answer for the expressi

All pairs shortest paths, N = number of rows of the graph D[i[j] = C[i][...

N = number of rows of the graph D[i[j] = C[i][j] For k from 1 to n Do for i = 1 to n Do for j = 1 to n D[i[j]= minimum( d ij (k-1) ,d ik (k-1) +d kj (k-1)

Searching, Searching is the procedure of looking for something: Finding one...

Searching is the procedure of looking for something: Finding one piece of data that has been stored inside a whole group of data. It is frequently the most time-consuming part of m

Program for linear search, Program for Linear Search. Program: Linear S...

Program for Linear Search. Program: Linear Search /*Program for Linear Search*/ /*Header Files*/ #include #include /*Global Variables*/ int search; int

Programme in c to create a single linked list, Q. Write  down a   p...

Q. Write  down a   programme  in  C  to  create  a  single  linked  list also  write the functions to do the following operations (i)  To insert a new node at the end (ii

Delete a given node from a doubly linked list, Algorithm to Delete a given ...

Algorithm to Delete a given node from a doubly linked list Delete a Node from Double Linked List DELETEDBL(INFO, FORW, BACK, START, AVAIL,LOC) 1. [Delete Node] Set FOR

What is assertions and abstract data types, Assertions and Abstract Data Ty...

Assertions and Abstract Data Types Even though we have defined assertions in terms of programs, notion can be extended to abstract data types (which are mathematical entities).

File organisation, File organisation might be described as a method of stor...

File organisation might be described as a method of storing records in file. Also, the subsequent implications approaching these records can be accessed. Given are the factors invo

Explain space complexity, Explain Space Complexity Space Complexity :...

Explain Space Complexity Space Complexity :- The space complexity of an algorithm is the amount of memory it requires to run to completion. Some of the reasons to study space

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd