The complexity ladder, Data Structure & Algorithms

Assignment Help:

The complexity Ladder:

  • T(n) = O(1). It is called constant growth. T(n) does not raise at all as a function of n, it is a constant. For illustration, array access has this characteristic. A[i] takes the identical time independent of the size of the array A.
  • T(n) = O(log2 (n)). It is called logarithmic growth. T(n) raise proportional to the base 2 logarithm of n. In fact, the base of logarithm does not matter. For instance, binary search has this characteristic.
  • T(n) = O(n). It is called linear growth. T(n) linearly grows with n. For instance, looping over all the elements into a one-dimensional array of n elements would be of the order of O(n).
  • T(n) = O(n log (n). It is called nlogn growth. T(n) raise proportional to n times the base 2 logarithm of n. Time complexity of Merge Sort contain this characteristic. Actually no sorting algorithm that employs comparison among elements can be faster than n log n.
  • T(n) = O(nk). It is called polynomial growth. T(n) raise proportional to the k-th power of n. We rarely assume algorithms which run in time O(nk) where k is bigger than 2 , since such algorithms are very slow and not practical. For instance, selection sort is an O(n2) algorithm.
  • T(n) = O(2n) It is called exponential growth. T(n) raise exponentially.

In computer science, Exponential growth is the most-danger growth pattern. Algorithms which grow this way are fundamentally useless for anything except for very small input size.

Table 1 compares several algorithms in terms of their complexities.

Table 2 compares the typical running time of algorithms of distinct orders.

The growth patterns above have been tabulated in order of enhancing size. That is,   

  O(1) <  O(log(n)) < O(n log(n)) < O(n2)  < O(n3), ... , O(2n).

Notation

Name

Example

O(1)

Constant

Constant growth. Does

 

 

not grow as a function

of n. For example, accessing array for one element A[i]

O(log n)

Logarithmic

Binary search

O(n)

Linear

Looping over n

elements, of an array of size n (normally).

O(n log n)

Sometimes called

"linearithmic"

Merge sort

O(n2)

Quadratic

Worst time case for

insertion sort, matrix multiplication

O(nc)

Polynomial,

sometimes

 

O(cn)

Exponential

 

O(n!)

Factorial

 

 

              Table 1: Comparison of several algorithms & their complexities

 

 

 

Array size

 

Logarithmic:

log2N

 

Linear: N

 

Quadratic: N2

 

Exponential:

2N

 

8

128

256

1000

100,000

 

3

7

8

10

17

 

8

128

256

1000

100,000

 

64

16,384

65,536

1 million

10 billion

 

256

3.4*1038

1.15*1077

1.07*10301

........

 


Related Discussions:- The complexity ladder

Hashing and five popular hashing functions, Q. Explain the term hashing? Ex...

Q. Explain the term hashing? Explain any five well known hash functions.                         Ans: Hashing method provides us the direct access of record from the f

Optimization Methods, Optimal solution to the problem given below. Obtain t...

Optimal solution to the problem given below. Obtain the initial solution by VAM Ware houses Stores Availibility I II III IV A 5 1 3 3 34 B 3 3 5 4 15 C 6 4 4 3 12 D 4 –1 4 2 19 Re

Explain multidimensional array, Multidimensional array: Multidimensional a...

Multidimensional array: Multidimensional arrays can be defined as "arrays of arrays". For example, a bidimensional array can be imagined as a bidimensional table made of elements,

Frequency count, what is frequency count with examble? examble?

what is frequency count with examble? examble?

Construction of a binary tree , Q. Construct a binary tree whose nodes in i...

Q. Construct a binary tree whose nodes in inorder and preorder are written as follows: Inorder : 10, 15, 17, 18, 20, 25, 30, 35, 38, 40, 50 Preorder: 20, 15, 10

Explain th term input and output- pseudocode, Explain th term input and ou...

Explain th term input and output-  Pseudocode Input and output indicated by the use of terms input number, print total, output total, print "result is" x and so on.

Linked list, write an algorithm for multiplication of two sparse matrices u...

write an algorithm for multiplication of two sparse matrices using Linked Lists

Define queue fifo ?, A queue is a particular type of collection or abstract...

A queue is a particular type of collection or abstract data type in which the entities in the collection are went in order and the principal functions on the collection are the add

Searhing and sorting algorithms, how I can easily implement the bubble,sele...

how I can easily implement the bubble,selection,linear,binary searth algorithms?

Applications of the queue, Write down any four applications of the queues. ...

Write down any four applications of the queues.                                                            Ans. A pp li cation of Queue is given below (i)  Queue is

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd