The complexity ladder, Data Structure & Algorithms

Assignment Help:

The complexity Ladder:

  • T(n) = O(1). It is called constant growth. T(n) does not raise at all as a function of n, it is a constant. For illustration, array access has this characteristic. A[i] takes the identical time independent of the size of the array A.
  • T(n) = O(log2 (n)). It is called logarithmic growth. T(n) raise proportional to the base 2 logarithm of n. In fact, the base of logarithm does not matter. For instance, binary search has this characteristic.
  • T(n) = O(n). It is called linear growth. T(n) linearly grows with n. For instance, looping over all the elements into a one-dimensional array of n elements would be of the order of O(n).
  • T(n) = O(n log (n). It is called nlogn growth. T(n) raise proportional to n times the base 2 logarithm of n. Time complexity of Merge Sort contain this characteristic. Actually no sorting algorithm that employs comparison among elements can be faster than n log n.
  • T(n) = O(nk). It is called polynomial growth. T(n) raise proportional to the k-th power of n. We rarely assume algorithms which run in time O(nk) where k is bigger than 2 , since such algorithms are very slow and not practical. For instance, selection sort is an O(n2) algorithm.
  • T(n) = O(2n) It is called exponential growth. T(n) raise exponentially.

In computer science, Exponential growth is the most-danger growth pattern. Algorithms which grow this way are fundamentally useless for anything except for very small input size.

Table 1 compares several algorithms in terms of their complexities.

Table 2 compares the typical running time of algorithms of distinct orders.

The growth patterns above have been tabulated in order of enhancing size. That is,   

  O(1) <  O(log(n)) < O(n log(n)) < O(n2)  < O(n3), ... , O(2n).

Notation

Name

Example

O(1)

Constant

Constant growth. Does

 

 

not grow as a function

of n. For example, accessing array for one element A[i]

O(log n)

Logarithmic

Binary search

O(n)

Linear

Looping over n

elements, of an array of size n (normally).

O(n log n)

Sometimes called

"linearithmic"

Merge sort

O(n2)

Quadratic

Worst time case for

insertion sort, matrix multiplication

O(nc)

Polynomial,

sometimes

 

O(cn)

Exponential

 

O(n!)

Factorial

 

 

              Table 1: Comparison of several algorithms & their complexities

 

 

 

Array size

 

Logarithmic:

log2N

 

Linear: N

 

Quadratic: N2

 

Exponential:

2N

 

8

128

256

1000

100,000

 

3

7

8

10

17

 

8

128

256

1000

100,000

 

64

16,384

65,536

1 million

10 billion

 

256

3.4*1038

1.15*1077

1.07*10301

........

 


Related Discussions:- The complexity ladder

Define linked list ?, Linked lists are among the most common and easiest da...

Linked lists are among the most common and easiest data structures. They may be used to implement various other common abstract data types, including queues, stacks, symbolic expre

Explain about hidden-surface, Explain about Hidden-surface Hidden-line...

Explain about Hidden-surface Hidden-line removal refers to wire-frame diagrams without surface rendering and polygonal surfaces with straight edges. Hidden-surface removal ref

String pattern matching, Document processing is quickly becoming one of the...

Document processing is quickly becoming one of the dominant functions of computers. Computers are utilized to edit, search & transport documents over the Internet, and to display d

Direct file organisation, It offers an effective way to organize data while...

It offers an effective way to organize data while there is a requirement to access individual records directly. To access a record directly (or random access) a relationship is

Type of qualitative method, Type of Qualitative Method: Different  qua...

Type of Qualitative Method: Different  qualitative methods are suitable for different  types of study. Quite often we can  combine  qualitative and quantitative  methods. Many

Find a minimum cost spanning arborescence rooted, Find a minimum cost spann...

Find a minimum cost spanning arborescence rooted at r for the digraph shown below, using the final algorithm shown in class. Please show your work, and also give a final diagram wh

Explain first - fit method, First - Fit Method: -    The free list is trave...

First - Fit Method: -    The free list is traversed sequentially to search the 1st free block whose size is larger than or equal to the amount requested. Once the block is found it

Complete trees, This is a k-ary position tree wherein all levels are filled...

This is a k-ary position tree wherein all levels are filled from left to right. There are a number of specialized trees. They are binary trees, AVL-trees, binary search trees, 2

Explain all-pair shortest-paths problem, Explain All-pair shortest-paths pr...

Explain All-pair shortest-paths problem Given a weighted linked graph (undirected or directed), the all pairs shortest paths problem asks to find the distances (the lengths of

The space - time trade off, The Space - Time Trade Off The best algorit...

The Space - Time Trade Off The best algorithm to solve a given problem is one that needs less space in memory and takes less time to complete its implementation. But in practic

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd