The complexity ladder, Data Structure & Algorithms

Assignment Help:

The complexity Ladder:

  • T(n) = O(1). It is called constant growth. T(n) does not raise at all as a function of n, it is a constant. For illustration, array access has this characteristic. A[i] takes the identical time independent of the size of the array A.
  • T(n) = O(log2 (n)). It is called logarithmic growth. T(n) raise proportional to the base 2 logarithm of n. In fact, the base of logarithm does not matter. For instance, binary search has this characteristic.
  • T(n) = O(n). It is called linear growth. T(n) linearly grows with n. For instance, looping over all the elements into a one-dimensional array of n elements would be of the order of O(n).
  • T(n) = O(n log (n). It is called nlogn growth. T(n) raise proportional to n times the base 2 logarithm of n. Time complexity of Merge Sort contain this characteristic. Actually no sorting algorithm that employs comparison among elements can be faster than n log n.
  • T(n) = O(nk). It is called polynomial growth. T(n) raise proportional to the k-th power of n. We rarely assume algorithms which run in time O(nk) where k is bigger than 2 , since such algorithms are very slow and not practical. For instance, selection sort is an O(n2) algorithm.
  • T(n) = O(2n) It is called exponential growth. T(n) raise exponentially.

In computer science, Exponential growth is the most-danger growth pattern. Algorithms which grow this way are fundamentally useless for anything except for very small input size.

Table 1 compares several algorithms in terms of their complexities.

Table 2 compares the typical running time of algorithms of distinct orders.

The growth patterns above have been tabulated in order of enhancing size. That is,   

  O(1) <  O(log(n)) < O(n log(n)) < O(n2)  < O(n3), ... , O(2n).

Notation

Name

Example

O(1)

Constant

Constant growth. Does

 

 

not grow as a function

of n. For example, accessing array for one element A[i]

O(log n)

Logarithmic

Binary search

O(n)

Linear

Looping over n

elements, of an array of size n (normally).

O(n log n)

Sometimes called

"linearithmic"

Merge sort

O(n2)

Quadratic

Worst time case for

insertion sort, matrix multiplication

O(nc)

Polynomial,

sometimes

 

O(cn)

Exponential

 

O(n!)

Factorial

 

 

              Table 1: Comparison of several algorithms & their complexities

 

 

 

Array size

 

Logarithmic:

log2N

 

Linear: N

 

Quadratic: N2

 

Exponential:

2N

 

8

128

256

1000

100,000

 

3

7

8

10

17

 

8

128

256

1000

100,000

 

64

16,384

65,536

1 million

10 billion

 

256

3.4*1038

1.15*1077

1.07*10301

........

 


Related Discussions:- The complexity ladder

Explain about hubs, Hubs - In reality a multiport repeater - Connect...

Hubs - In reality a multiport repeater - Connects stations in a physical star topology - As well may create multiple levels of hierarchy to remove length limitation of 10

Programming information system, Describe an algorithm to play the Game of N...

Describe an algorithm to play the Game of Nim using all of the three tools (pseudocode, flowchart, hierarchy chart)

Queue, algorithm for insertion in a queue using pointers

algorithm for insertion in a queue using pointers

Sorting, how to do a merge sorting

how to do a merge sorting

Algorithm to merge two sorted arrays with third array, Q. Write down an alg...

Q. Write down an algorithm to merge the two sorted arrays into the third array. Do  not perform the sort function in the third array.                           Ans: void m

Explain decision tree, Decision Tree A decision tree is a diagram that ...

Decision Tree A decision tree is a diagram that shows conditions and actions sequentially and therefore shows which condition is to be considered first, second and so on. It is

Define the term array, Define the term array. An array is a way to refe...

Define the term array. An array is a way to reference a series of memory locations using the same name. Each memory location is represented by an array element. An  array eleme

Asymptotic notation.., important points on asymptotic notation to remember

important points on asymptotic notation to remember

What is diffuse illumination, Diffuse Illumination Diffuse illuminatio...

Diffuse Illumination Diffuse illumination means light that comes from all directions not from one particular source. Think about the light of a grey cloudy day as compared to

Asymptotic analysis, Asymptotic Analysis Asymptotic analysis is dependi...

Asymptotic Analysis Asymptotic analysis is depending on the idea that as the problem size grows, the complexity can be defined as a simple proportionality to some known functio

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd