The complexity ladder, Data Structure & Algorithms

Assignment Help:

The complexity Ladder:

  • T(n) = O(1). It is called constant growth. T(n) does not raise at all as a function of n, it is a constant. For illustration, array access has this characteristic. A[i] takes the identical time independent of the size of the array A.
  • T(n) = O(log2 (n)). It is called logarithmic growth. T(n) raise proportional to the base 2 logarithm of n. In fact, the base of logarithm does not matter. For instance, binary search has this characteristic.
  • T(n) = O(n). It is called linear growth. T(n) linearly grows with n. For instance, looping over all the elements into a one-dimensional array of n elements would be of the order of O(n).
  • T(n) = O(n log (n). It is called nlogn growth. T(n) raise proportional to n times the base 2 logarithm of n. Time complexity of Merge Sort contain this characteristic. Actually no sorting algorithm that employs comparison among elements can be faster than n log n.
  • T(n) = O(nk). It is called polynomial growth. T(n) raise proportional to the k-th power of n. We rarely assume algorithms which run in time O(nk) where k is bigger than 2 , since such algorithms are very slow and not practical. For instance, selection sort is an O(n2) algorithm.
  • T(n) = O(2n) It is called exponential growth. T(n) raise exponentially.

In computer science, Exponential growth is the most-danger growth pattern. Algorithms which grow this way are fundamentally useless for anything except for very small input size.

Table 1 compares several algorithms in terms of their complexities.

Table 2 compares the typical running time of algorithms of distinct orders.

The growth patterns above have been tabulated in order of enhancing size. That is,   

  O(1) <  O(log(n)) < O(n log(n)) < O(n2)  < O(n3), ... , O(2n).

Notation

Name

Example

O(1)

Constant

Constant growth. Does

 

 

not grow as a function

of n. For example, accessing array for one element A[i]

O(log n)

Logarithmic

Binary search

O(n)

Linear

Looping over n

elements, of an array of size n (normally).

O(n log n)

Sometimes called

"linearithmic"

Merge sort

O(n2)

Quadratic

Worst time case for

insertion sort, matrix multiplication

O(nc)

Polynomial,

sometimes

 

O(cn)

Exponential

 

O(n!)

Factorial

 

 

              Table 1: Comparison of several algorithms & their complexities

 

 

 

Array size

 

Logarithmic:

log2N

 

Linear: N

 

Quadratic: N2

 

Exponential:

2N

 

8

128

256

1000

100,000

 

3

7

8

10

17

 

8

128

256

1000

100,000

 

64

16,384

65,536

1 million

10 billion

 

256

3.4*1038

1.15*1077

1.07*10301

........

 


Related Discussions:- The complexity ladder

Dqueue, algorithm of output restricted queue.

algorithm of output restricted queue.

Java, Ask consider the file name cars.text each line in the file contains i...

Ask consider the file name cars.text each line in the file contains information about a car ( year,company,manufacture,model name,type) 1-read the file 2-add each car which is repr

Branch and bound algorithm, Suppose we have a set of N agents and a set of ...

Suppose we have a set of N agents and a set of N tasks.Each agent can only perform exactly one task and there is a cost associated with each assignment. We would like to find out a

Using array to execute the queue structure, Q. Using array to execute the q...

Q. Using array to execute the queue structure, write down an algorithm/program to (i) Insert an element in the queue. (ii) Delete an element from the queue.

What is the best case complexity of quick sort, What is the best case compl...

What is the best case complexity of quick sort In the best case complexity, the pivot is in the middle.

Threads in main method, Create main method or a test class that creates 2 E...

Create main method or a test class that creates 2 Element objects that are neighbours of each other, the first element temperature set at 100, the 2nd at 0 and use an appropriate h

Write about enterprise manager, Question 1 . Give the structure of PL/SQL B...

Question 1 . Give the structure of PL/SQL Blocks and explain Question 2 . Differentiate between PL/SQL functions and procedures Question 3 . Explain the following Par

Define big omega notation, Define Big Omega notation Big Omega notatio...

Define Big Omega notation Big Omega notation (?) : The lower bound for the function 'f' is given by the big omega notation (?). Considering 'g' to be a function from the non-n

Determine the greatest common divisor, Determine the greatest common diviso...

Determine the greatest common divisor (GCD) of two integers, m & n. The algorithm for GCD might be defined as follows: While m is greater than zero: If n is greater than m, s

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd