The classical job shop scheduling problem (jsp), Mechanical Engineering

Assignment Help:

The Classical Job Shop Scheduling Problem (Jsp)

A  job  shop  scheduling  problem  occupies  the  determination  of  beginning  time  for  all operations in a finite and specified set, N. Related along with each operation i ε N there is a processing time pi. The operations in set N are portioned in n equally exclusive and exhaustive subsets Jk, here Jk is termed as job k. The operations in set N are portioned also into m equally exhaustive and exclusive subsets Mr, where Mr is the set of operations to be processed upon machine r. Also specified are the precedence associations, and the operations in a job or technological constraints. A pair (i, j), i, j ∈ Jk, imply that operation i precedes operation j in job k. Assume that Ak = {(i, j) | i, j ∈ Jk and I must precede j} indicate the set of pairs that illustrate the technological constraints related with job k. Related with every operation i ∈ N there is a processing time pi. The traditional job shop scheduling problem is to calculating the processing order of the operations in Mr, for r = 1, 2, . . . , m, such as several objective function is optimized.

This problem contains finding the vector of operation begin times, t = (t1, t2, . . . , t¦N¦), which minimizes a specified objective function Z (t). The difficulty can be formulated mathematically as given below:

(JSP): Minimize Z (t) Subjected to

 ti - 1 tj ≥ pj,                                         (i, j) ∈ Ak, k = 1, 2, . . . , n                 . . . (1)

ti  - tj ≥ pj V tj - ti ≥ pi,                          i, j, ∈ Mr, r = 1, 2, . . . , m                 . . . (2)

ti ≥ 0,                                                               i ∈ N.                                   . . . (3)

Eq. (1) makes sure that the technological constraints are satisfied. The disjunctive relation in Eq. (2) makes sure that the ability constraints on the machines are not violated that is a machine can process individual operation at a time. JSP is well identifying that it belongs to a class of the most complicated combinatorial optimization problems and it has been extensively studied.

Usual assumptions made in job shop scheduling comprise the following figure:

A1

Each job needs only one machine at a time, that is Mr ∩ Ms = φ, r ≠ s.

A2

One job processes by one machine at a time, that is | Jk ∩ Mr   | = 1, k = 1, . . . , n and r = 1, . . . , m. also this shows that a job visits each machine exactly once, that is two operations in similar job cannot use similar machine.

A 3

The  order  in  that  a  job  visits  various  machines  is  predetermined  via technological constraints, that is the set A = A1 ∪ A2 ∪ . . . ∪ An, is specified and fixed. Ak can be seemed like the machine routing or process plan for job k.

A4

No explicit consideration is specified to auxiliary resources as like: material handling, buffer space and tooling.

                                               414_The Classical Job Shop Scheduling Problem (Jsp).png

                                                 Figure: Typical Assumption Made in Job Shop Scheduling

These assumptions are suitable for manufacturing environments that is, which human intervention is important and the equipment utilized is hard automation or manual. This is also suitable in environments characterized via batch production, in that every part type has a fixed and determined process plan. A specified workstation or machine is pre- assigned to execute each step in the process plan.


Related Discussions:- The classical job shop scheduling problem (jsp)

Som, Strain energy stored in a body due to impact load

Strain energy stored in a body due to impact load

Pulleys, what do you mean by law of belting and also explain the crowning o...

what do you mean by law of belting and also explain the crowning of pulleys ?

Compute the maximum bending moment, Compute the maximum bending moment: ...

Compute the maximum bending moment: A simply supported beam of 7 m length carries point loads 2 kN, 4 kN and 6 kN at distances of 1 m, 2 m & 4 m from the fixed end respectivel

V-block and clamp - angle projection drawing, A V-block clamp consists of 3...

A V-block clamp consists of 3 components, a V-block, yoke and clamping screw.  Using a rule, measure the sketches below and produce a 3rd angle projection drawing for each componen

Derive mathematical equation for bernoulls equation, Derive mathmatical equ...

Derive mathmatical equation for Bernoull's equation, what are the application of Bernoull's equation and illustrate any one.

Deflection at the centre - maximum deflection, Deflection at the centre - m...

Deflection at the centre - maximum deflection: A simply supported beam of span 6 m is subjected to Udl of 24 kN/m for a length of 2 m from left support. Discover the deflectio

Copper alloys, Copper Alloys Some alloys of copper are employed in ind...

Copper Alloys Some alloys of copper are employed in industry for varying causes. Copper forms alloys along with zinc or the brasses, tin or the bronzes, along with tin and pho

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd