The appropriate resource constraint, Mathematics

Assignment Help:

Consider a person's decision problem in trying to decide how many children to have. Although she cares about children and would like to have as many as possible, she knows that children are "costly" in the sense that there are costs to their upbringing as well as the time that she will have to take off from work in order to have children. Her utility function over her own consumption (x), her own leisure (l) and the number of children (n) is given by the following utility function:

U(x,l,n) = x1/6l1/6n1/6

For tractability (and to be able to use calculus), we will assume that the number of children, n is a continuous variable (i.e. it can take any nonnegative value, including decimal values like 2.15 etc.). This individual is endowed with a total of T units of time in her life, which she can divide between working, leisure and having children. For having each child, she will have to take time t off from work, during which she will not earn anything. Besides this, there is a per child cost of n for upbringing expenses.

Her wage rate is w; she uses her total income to purchase good x for her own consumption, as well as to provide for the upbringing expenses of her children. Assume that good x is priced at p per unit.

(a) Write the consumer's optimization problem with the appropriate resource constraint, and derive her Marshalian demand for children n.

[Hint: Instead of redoing the whole calculations, can you make use of your results from Problem 1?]

(b) Suppose the government introduces child benefits i.e. for every child she has, the government provides her an amount s. How will this affect her decision on how many children to have i.e. is dn/sn greater or less than 0?


Related Discussions:- The appropriate resource constraint

How much does it car cost her per year, Ashley's car insurance costs her $1...

Ashley's car insurance costs her $115 per month. How much does it cost her per year? Multiply $115 by 12 because there are 12 months in a year; $115 × $12 = $1,380 per year.

Linear programming Special purpose of algorithm, the conclusion about stepp...

the conclusion about stepping stone method in real life situation?

Elli[ital paths of celestial bodies, Create a detailed diagram to describe ...

Create a detailed diagram to describe the equation of an ellipse in terms of it’s eccentricity and indicate how the foci and major and minor semi-axes are involved. Y

Example of imaginary numbers, Example of Imaginary Numbers: Example 1...

Example of Imaginary Numbers: Example 1: Multiply √-2  and √-32 Solution: (√-2)( √-32) = (√2i)( √32i) =√64 (-1) =8 (-1) =-8 Example 2: Divid

Find the sum of given equation upto n limit, Find the sum of (1 - 1/n ) + (...

Find the sum of (1 - 1/n ) + (1 - 2/n ) + (1 - 3/n ) ....... upto n terms. Ans: (1 - 1/n ) + (1 - 2/n ) - upto n terms   ⇒[1+1+.......+n terms] - [ 1/n + 2/n +....+

Finf the value of x or y from given liner equation, 41x + 53y = 135, 53x +4...

41x + 53y = 135, 53x +41y =147 Ans:    41x + 53 y = 135, 53 x + 41 y = 147 Add the two equations : Solve it, to get ... x + y = 3 -------(1) Subtract : Solve it , to

Related rates of differentiation., Related Rates : In this section we wil...

Related Rates : In this section we will discussed for application of implicit differentiation.  For these related rates problems usually it's best to just see some problems an

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd