The appropriate resource constraint, Mathematics

Assignment Help:

Consider a person's decision problem in trying to decide how many children to have. Although she cares about children and would like to have as many as possible, she knows that children are "costly" in the sense that there are costs to their upbringing as well as the time that she will have to take off from work in order to have children. Her utility function over her own consumption (x), her own leisure (l) and the number of children (n) is given by the following utility function:

U(x,l,n) = x1/6l1/6n1/6

For tractability (and to be able to use calculus), we will assume that the number of children, n is a continuous variable (i.e. it can take any nonnegative value, including decimal values like 2.15 etc.). This individual is endowed with a total of T units of time in her life, which she can divide between working, leisure and having children. For having each child, she will have to take time t off from work, during which she will not earn anything. Besides this, there is a per child cost of n for upbringing expenses.

Her wage rate is w; she uses her total income to purchase good x for her own consumption, as well as to provide for the upbringing expenses of her children. Assume that good x is priced at p per unit.

(a) Write the consumer's optimization problem with the appropriate resource constraint, and derive her Marshalian demand for children n.

[Hint: Instead of redoing the whole calculations, can you make use of your results from Problem 1?]

(b) Suppose the government introduces child benefits i.e. for every child she has, the government provides her an amount s. How will this affect her decision on how many children to have i.e. is dn/sn greater or less than 0?


Related Discussions:- The appropriate resource constraint

Conditional probability - rules of probability, Conditional probability - R...

Conditional probability - Rules of Probability This is the probability associated with combinations of events but given that some prior result has already been achieved with o

Solutions to systems, Now that we've found some of the fundamentals out of ...

Now that we've found some of the fundamentals out of the way for systems of differential equations it's time to start thinking about how to solve a system of differential equations

The shortest distance between the line y-x=1 and curve x=y^2, Any point on ...

Any point on parabola, (k 2 ,k) Perpendicular distance formula: D=(k-k 2 -1)/2 1/2 Differentiating and putting =0 1-2k=0 k=1/2 Therefore the point is (1/4, 1/2) D=3/(32 1/2

Mathematics- in our lives , MATHEMATICS - IN OUR LIVES : What is the mo...

MATHEMATICS - IN OUR LIVES : What is the most obvious example of mathematics in your life? To many of us it is the maths that we studied in school. But is that all the mathemat

Find the coordinates of the other two vertices, The two opposite vertices o...

The two opposite vertices of a square are (-1, 2) and (3, 2). Find the coordinates of the other two vertices.

Find ad, A circle is inscribed in a triangle ABC having sides 8cm, 10cm and...

A circle is inscribed in a triangle ABC having sides 8cm, 10cm and 12cm as shown in the figure. Find AD, BE and CF.

Compositions of relations, Let Consider R A Χ B, S B Χ C be two relation...

Let Consider R A Χ B, S B Χ C be two relations. Then compositions of the relations S and R given by SoR A Χ C and is explained by (a, c) €(S o R) iff € b € B like (a, b) € R,

Permutation, HOW MANY number laying between 100 and 1000 can be formed with...

HOW MANY number laying between 100 and 1000 can be formed with 0,1,2,3,4,5 and also divisible by 5 with distinct digit

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd