Tests for heteroscedasticity, Advanced Statistics

Assignment Help:

Lagrange Multiplier (LM) test

The Null Hypothesis - H0: There is no heteroscedasticity i.e. β1 = 0

The Alternative Hypothesis - H1:  There is heteroscedasticity i.e. β1 0

Reject H0 if nR2 > 2094_Tests for Heteroscedasticity.png

Regression Analysis: sqresi versus sqfits

The regression equation is

sqresi = 0.00517 + 0.0196 sqfits

Predictor    Coef          SE Coef       T       P        VIF

Constant   0.005173  0.001130  4.58  0.000

sqfits         0.019650  0.008395  2.34  0.019  1.000

 

S = 0.0112996   R-Sq = 0.4%   R-Sq(adj) = 0.3%

Analysis of Variance

Source             DF         SS                   MS           F      P

Regression       1        0.0006996  0.0006996  5.48  0.019

Residual Error  1500  0.1915214  0.0001277

  Lack of Fit      646    0.0819554  0.0001269  0.99  0.559

  Pure Error     854    0.1095659   0.0001283

Total           1501  0.1922209

MTB > let k1 = 1502*0.04

MTB > print k1

Data Display

K1    60.0800

Inverse Cumulative Distribution Function

Chi-Square with 1 DF

P( X <= x )        x

       0.95  3.84146

Since nR2 = (1502*0.04) 60.0800 > 3.84146 = 2094_Tests for Heteroscedasticity.png, there is sufficient evidence to reject H0 which suggest that there is heteroscedasticity from the Lagrange Multiplier (LM) test at 5% significance level which means that one or more slopes are not zero.


Related Discussions:- Tests for heteroscedasticity

Dirichlet process, The distribution over distributions in the sense that ea...

The distribution over distributions in the sense that each draw from the process is itself the distribution. The name Dirichlet process or procedure is due to the fact that the ?ni

Over dispersion, Over dispersion is the phenomenon which occurs when empir...

Over dispersion is the phenomenon which occurs when empirical variance in the data exceeds the nominal variance under some supposed model. Most often encountered when the modeling

Design, Difference between tretment design and experimental design

Difference between tretment design and experimental design

Disclosure risk, The risk of being able to recognize the respondent's confi...

The risk of being able to recognize the respondent's confidential information in the data set. Number of approaches has been proposed to measure the disclosure risk some of which c

SCATTER DIAGRAM, MEANING ,IMPORTANCE AND RELEAVANCE OF SCATTER DIAGRAM

MEANING ,IMPORTANCE AND RELEAVANCE OF SCATTER DIAGRAM

Quantitative Analysis for Management Chapter 4, 4-13. Students in a manage...

4-13. Students in a management science class have just received their grades on the first test. The instructor has provided information about the first test grades in some previou

Weighted least squares, Weighted least squares  is the method of estimation...

Weighted least squares  is the method of estimation in which the estimates arise from minimizing the weighted sum of squares of the differences between response variable and its pr

Frequency distribution, The division of a sample of observations into sever...

The division of a sample of observations into several classes, together with the number of observations in each of them.  It acts as a useful summary of the main features of the da

Projection pursuit, Projection pursuit is a procedure for attaning a low-d...

Projection pursuit is a procedure for attaning a low-dimensional (usually two-dimensional) representation of the multivariate data, which will be particularly useful in revealing

Raking adjustments, Raking adjustments  is an alternative to the post strat...

Raking adjustments  is an alternative to the post stratification adjustments in the complex surveys which ensures that the adjusted weights of the respondents conform to each of th

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd