Tests for heteroscedasticity, Advanced Statistics

Assignment Help:

Lagrange Multiplier (LM) test

The Null Hypothesis - H0: There is no heteroscedasticity i.e. β1 = 0

The Alternative Hypothesis - H1:  There is heteroscedasticity i.e. β1 0

Reject H0 if nR2 > 2094_Tests for Heteroscedasticity.png

Regression Analysis: sqresi versus sqfits

The regression equation is

sqresi = 0.00517 + 0.0196 sqfits

Predictor    Coef          SE Coef       T       P        VIF

Constant   0.005173  0.001130  4.58  0.000

sqfits         0.019650  0.008395  2.34  0.019  1.000

 

S = 0.0112996   R-Sq = 0.4%   R-Sq(adj) = 0.3%

Analysis of Variance

Source             DF         SS                   MS           F      P

Regression       1        0.0006996  0.0006996  5.48  0.019

Residual Error  1500  0.1915214  0.0001277

  Lack of Fit      646    0.0819554  0.0001269  0.99  0.559

  Pure Error     854    0.1095659   0.0001283

Total           1501  0.1922209

MTB > let k1 = 1502*0.04

MTB > print k1

Data Display

K1    60.0800

Inverse Cumulative Distribution Function

Chi-Square with 1 DF

P( X <= x )        x

       0.95  3.84146

Since nR2 = (1502*0.04) 60.0800 > 3.84146 = 2094_Tests for Heteroscedasticity.png, there is sufficient evidence to reject H0 which suggest that there is heteroscedasticity from the Lagrange Multiplier (LM) test at 5% significance level which means that one or more slopes are not zero.


Related Discussions:- Tests for heteroscedasticity

Effect sparsity, The term which is used in the industrial experimentation, ...

The term which is used in the industrial experimentation, where there is commonly a large set of candidate factors believed to have the possible significant influence on the respon

Explain prevalence, Prevalence : The measure of the number of people in a p...

Prevalence : The measure of the number of people in a population who have a certain disease at a given point in time. It c an be measured by two methods, as point prevalence and p

Statistics HW, we are testing : Ho: µ=40 versus Ha: µ>40 (a= 0.01) Suppose...

we are testing : Ho: µ=40 versus Ha: µ>40 (a= 0.01) Suppose that the test statistic is z0=2.75 based on a sample size of n=25. Assume that data are normal with mean mu and standa

Historigram, difference between histogram and historigram

difference between histogram and historigram

Particlefilters, Particlefilters is a simulation method for tracking movin...

Particlefilters is a simulation method for tracking moving target distributions and for reducing computational burden of the dynamic Bayesian analysis. The method uses a Markov ch

Data collection - analysis and display, One of the most exciting areas of m...

One of the most exciting areas of mathematics involves the application of statistics to real-world settings to make informed decisions. In this task you will design, implement, and

Dirichlet process mixture models, The nonparametric Bayesian inference appr...

The nonparametric Bayesian inference approach to using the finite mixture distributions for modelling data suspected of the containing distinct groups of observations; this approac

Expert systems, The computer programs designed to mimic the role of the exp...

The computer programs designed to mimic the role of the expert human consultant. This type of systems are capable to cope with the complex problems of the medical decision makin

Explain influence statistics, Influence statistics: The range of statistic...

Influence statistics: The range of statistics designed to assess the effect or the in?uence of an observation in determining results of the regression analysis. The general approa

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd