Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Test of homogeneity
This is concerned along with the proposition that several populations are homogenous along with respect to some characteristic of interest for example; one may be interested in knowing if raw material available from various retailers is homogenous. A random sample is drawn from each of the population and the number in each of sample falling into every category is determined. The sample data is shown in a contingency table
The analytical procedure is the similar as that discussed for the test of independence
Illustration
A random sample of 400 persons was selected from each of three age groups and every person was asked to specify which types of TV programs are preferred. The results are displayed in the given table
Kind of program
Age group
A
B
C
Total
Under 30
120
30
50
200
30 - 44
10
75
15
100
45 and above
60
140
135
125
400
Test the hypothesis that populations are homogenous along with respect to the types of television program they prefer, at 5 percent level of significance.
Solution
Assume that take hypothesis that the populations are homogenous with respect to different forms of television programs they prefer
Applying χ2 test
O
E
(O - E) 2
(O - E) 2 /E
70.00
2500.00
35.7143
35.00
625.00
17.8571
67.50
1406.25
20.8333
33.75
1701.56
50.4166
14.06
0.4166
62.50
156.25
2.500
31.25
264.06
8.4499
826.56
26.449
Σ(O - E) 2 /E = 180.4948
χ2 = Σ(O - E)2/E
The table value of χ2 for 4d.f. at 5 percent level of significance is 9.488
The calculated value of χ2 is greater than the table value. We reject/refuse the hypothesis and conclude to the populations are not homogenous with respect to the type of TV programs preferred, conversely the different age groups vary in choice of TV programs.
Center and Radius 1)(x+2)^2-(y-3)^2=4
Critical point of exponential functions and trig functions, Let's see some examples that don't just involve powers of x. Example: find out all the critical points for the
The population of a city is observed as growing exponentially according to the function P(t) = P0 e kt , where the population doubled in the first 50 years. (a) Find k to three
Newton's Method : If x n is an approximation a solution of f ( x ) = 0 and if given by, f ′ ( x n ) ≠ 0 the next approximation is given by
The 3-D Coordinate System We will start the chapter off with a quite brief discussion introducing the 3-D coordinate system and the conventions that we will be utilizing. We
We will look at three types of progressions called Arithmetic, Geometric and Harmonic Progression. Before we start looking at the intricacies of these let us unders
Probability -Probability is an extremely popular concept in business management. Since it covers the risks such may be included in certain business situations. This is a fact
what are the advantages and disadvantages of both Laspeyres and Paasche index
By using n = 4 and all three rules to approximate the value of the following integral. Solution Very firstly, for reference purposes, Maple provides the following valu
HOW MATHEMATICAL IDEAS GROW : In this section we shall consider three aspects of the nature of mathematical ideas, namely, that they progress from concrete to abstract, from part
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd