Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Test of homogeneity
This is concerned along with the proposition that several populations are homogenous along with respect to some characteristic of interest for example; one may be interested in knowing if raw material available from various retailers is homogenous. A random sample is drawn from each of the population and the number in each of sample falling into every category is determined. The sample data is shown in a contingency table
The analytical procedure is the similar as that discussed for the test of independence
Illustration
A random sample of 400 persons was selected from each of three age groups and every person was asked to specify which types of TV programs are preferred. The results are displayed in the given table
Kind of program
Age group
A
B
C
Total
Under 30
120
30
50
200
30 - 44
10
75
15
100
45 and above
60
140
135
125
400
Test the hypothesis that populations are homogenous along with respect to the types of television program they prefer, at 5 percent level of significance.
Solution
Assume that take hypothesis that the populations are homogenous with respect to different forms of television programs they prefer
Applying χ2 test
O
E
(O - E) 2
(O - E) 2 /E
70.00
2500.00
35.7143
35.00
625.00
17.8571
67.50
1406.25
20.8333
33.75
1701.56
50.4166
14.06
0.4166
62.50
156.25
2.500
31.25
264.06
8.4499
826.56
26.449
Σ(O - E) 2 /E = 180.4948
χ2 = Σ(O - E)2/E
The table value of χ2 for 4d.f. at 5 percent level of significance is 9.488
The calculated value of χ2 is greater than the table value. We reject/refuse the hypothesis and conclude to the populations are not homogenous with respect to the type of TV programs preferred, conversely the different age groups vary in choice of TV programs.
.find lim sup Ek and liminf Ek of Ek=[(-(1/k),1] for k odd and liminf Ek=[(-1,(1/k)] for k even
Find out the linear approximation for at x =8 . Utilizes the linear approximation to approximate the value of and Solution Since it is just the tangent line there
Any point on parabola, (k 2 ,k) Perpendicular distance formula: D=(k-k 2 -1)/2 1/2 Differentiating and putting =0 1-2k=0 k=1/2 Therefore the point is (1/4, 1/2) D=3/(32 1/2
is mass marketing completely dead?
i have discovered a formula for finding the radius at any point of the graph have i done a good job
can someone help me with a statistics quiz?
Wendy has 5 pairs of pants and 8 shirts. How many different combinations could she form with these items? Multiply the number of choices for each item to find out the number of
a²+b²=1 a+b
Suppose research on three major cell phones companies revealed the following transition matrix for the probability that a person with one cell phone carrier switches to another.
Here we need to see the inverse of a matrix. Provided a square matrix, A, of size n x n if we can get the other matrix of similar size, B that, AB = BA = I n after that we call
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd