Taylor series - sequences and series, Mathematics

Assignment Help:

Taylor Series - Sequences and Series

In the preceding section we started looking at writing down a power series presentation of a function.  The difficulty with the approach in that part is that everything came down to requiring to be able to relate the function in some way to 

1/(1-x)

and when there are many functions out there that can be related to this function there are so many that simply can't be related to this.

Thus, without taking anything away from the procedures we looked at in the preceding section, what we require to do is come up with a much more general method for writing a power series presentation for a function.

 Thus, for the time being, let us make two assumptions.  First, let's suppose that the function f (x) does in fact have a power series presentation about  x = a,

1085_Taylor Series - Sequences and Series 1.png

Next, we will need to assume that the function, f (x), has derivatives of every order and that we can in fact find them all.

 Now here that we've assumed that a power series representation available we need to determine what the coefficients, cn are.  This is easier as compared to it might at first appear to be.  Let us first just evaluate everything at x = a.  This specifies,

f (a) = C0

Thus, all the terms apart from the first are zero and we now know what c0 is.  Not fortunately, there is not any other value of x that we can plug into the function that will permit us to rapidly find any of the other coefficients.  Though, if we take the derivative of the function (and its power series) after that plug in x = a we obtain,

f' (x) = c1 + 2c2 (x-a) + 3c3 (x-a)2 + 4c4 (x-a)3 + .....

f'(a) = c1

and we now recognize c1.

Let us carry on with this plan and find out the second derivative.

f'' (x) = 2c2 + 3(2) c3 (x-a) + 4 (3) c4 (x-a)2 + ....

f'' (a) = 2c2

Thus, it looks like,

C2 = f'' (a) / 2

By using the third derivative gives,

2062_Taylor Series - Sequences and Series 2.png

By using the fourth derivative gives,

1170_Taylor Series - Sequences and Series 3.png

With anticipation by this time you have seen the pattern here. Generally it looks like, we've got the subsequent formula for the coefficients.

Cn = f(n)(a) / n!


Related Discussions:- Taylor series - sequences and series

How several miles did joe walk altogether, Joe walked 2 1/2 miles to school...

Joe walked 2 1/2 miles to school, 1/3 mile to work, and 1 1/4 miles to his friend's house. How several miles did Joe walk altogether? To find out the total distance walked, add

Multiplication and division, you want to share 34 pencils among 6 friends ....

you want to share 34 pencils among 6 friends .How many would each friend get?

Determine the minimum cost , A company is taking bids on four construction ...

A company is taking bids on four construction jobs. Three Contractors have placed bids on the jobs. Their bids (in thousands of dollars) are given in the file. (A blank indicates n

Homogeneous differential equation, Assume that Y 1 (t) and Y 2 (t) are two ...

Assume that Y 1 (t) and Y 2 (t) are two solutions to (1) and y 1 (t) and y 2 (t) are a fundamental set of solutions to the associated homogeneous differential equation (2) so, Y

High dimensions, List the five most important things you learned about high...

List the five most important things you learned about high dimensions.

Circle, in one point of the circle only one tangent can be drawn. prove

in one point of the circle only one tangent can be drawn. prove

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd