Taylor series - sequences and series, Mathematics

Assignment Help:

Taylor Series - Sequences and Series

In the preceding section we started looking at writing down a power series presentation of a function.  The difficulty with the approach in that part is that everything came down to requiring to be able to relate the function in some way to 

1/(1-x)

and when there are many functions out there that can be related to this function there are so many that simply can't be related to this.

Thus, without taking anything away from the procedures we looked at in the preceding section, what we require to do is come up with a much more general method for writing a power series presentation for a function.

 Thus, for the time being, let us make two assumptions.  First, let's suppose that the function f (x) does in fact have a power series presentation about  x = a,

1085_Taylor Series - Sequences and Series 1.png

Next, we will need to assume that the function, f (x), has derivatives of every order and that we can in fact find them all.

 Now here that we've assumed that a power series representation available we need to determine what the coefficients, cn are.  This is easier as compared to it might at first appear to be.  Let us first just evaluate everything at x = a.  This specifies,

f (a) = C0

Thus, all the terms apart from the first are zero and we now know what c0 is.  Not fortunately, there is not any other value of x that we can plug into the function that will permit us to rapidly find any of the other coefficients.  Though, if we take the derivative of the function (and its power series) after that plug in x = a we obtain,

f' (x) = c1 + 2c2 (x-a) + 3c3 (x-a)2 + 4c4 (x-a)3 + .....

f'(a) = c1

and we now recognize c1.

Let us carry on with this plan and find out the second derivative.

f'' (x) = 2c2 + 3(2) c3 (x-a) + 4 (3) c4 (x-a)2 + ....

f'' (a) = 2c2

Thus, it looks like,

C2 = f'' (a) / 2

By using the third derivative gives,

2062_Taylor Series - Sequences and Series 2.png

By using the fourth derivative gives,

1170_Taylor Series - Sequences and Series 3.png

With anticipation by this time you have seen the pattern here. Generally it looks like, we've got the subsequent formula for the coefficients.

Cn = f(n)(a) / n!


Related Discussions:- Taylor series - sequences and series

Hypothesis testing about the difference between two proporti, Hypothesis Te...

Hypothesis Testing About The Difference Between Two Proportions Hypothesis testing about the difference between two proportions is used to test the difference between the propo

High self-esteem helps learning-how do children learn?, High Self-esteem He...

High Self-esteem Helps Learning :  Consider Ajay, a student of Class 2. He is constantly told by his irritated father, "How stupid you are! You don't even understand this! Even yo

Polynomials in one variable, Polynomials In this section we will discu...

Polynomials In this section we will discuss about polynomials.  We will begin with polynomials in one variable. Polynomials in one variable Polynomials in one variable

Geometry, finding missing values from given triangle diagra m..

finding missing values from given triangle diagra m..

Additionally functions in substitution rule, Substitution Rule Mostly ...

Substitution Rule Mostly integrals are fairly simple and most of the substitutions are quite simple. The problems arise in correctly getting the integral set up for the substi

Plane and solid mensuration, the area of a triangle is 20 and its base is 1...

the area of a triangle is 20 and its base is 16. Find the base of a similar triangle whose area is 45. Given is a regular pentagon. Find the measure of angle LHIK.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd