Tangents with polar coordinates - parametric equations, Mathematics

Assignment Help:

Tangents with Polar Coordinates

Here we now require to discuss some calculus topics in terms of polar coordinates.

We will begin with finding tangent lines to polar curves.  In this case we are going to suppose that the equation is in the form r = f (θ). Along with the equation in this form we can in fact make use of the equation for the derivative dy/dx.  We derived while we looked at tangent lines along with parametric equations. Though, to do this requires us to come up with a set of parametric equations to present the curve. In fact this is pretty easy to do.

From our work in the preceding section we have the subsequent set of conversion equations for going from polar coordinates to Cartesian coordinates.

x = r cos θ

y = r sin θ

Now here, we'll use the fact that we were assuming that the equation is in the form r = f (θ).

Substituting this into these equations provides the following set of parametric equations (along with θ like the parameter) for the curve.

From our work in the preceding section we have the subsequent set of conversion equations for going from polar coordinates to Cartesian coordinates.

x= r cosθ

y = r sinθ

Here now, we'll make use of the reality that we're assuming that the equation is in the form r = f (θ).  Substituting this into these equations provides the subsequent set of parametric equations (with θ like the parameter) for the curve.

x = f (θ) cos θ

 y = f (θ) sin θ

 Now, we will require the following derivatives.

 dx / dθ = f' (θ) cosθ - f (θ) sin θ

= dr / dθ (cosθ) - rsinθ

dy/dθ = f′ (θ) sinθ + f (θ) cosθ

 = dr/dθ (sinθ) + r cosθ


Related Discussions:- Tangents with polar coordinates - parametric equations

How to subtract fractions with the same denominators, Q. How to Subtract fr...

Q. How to Subtract fractions with the same denominators? Ans. Subtracting fractions is basically the same as adding them. If you don't know how to add fractions, you shoul

Simple harmonic motion, prove that the composition of two simple harmonic o...

prove that the composition of two simple harmonic of the same period and in the same straight line is also a simple harmonic motion of the same period.

Absolute convergent, Find out if each of the subsequent series are absolute...

Find out if each of the subsequent series are absolute convergent, conditionally convergent or divergent. Solution: (a) The above is the alternating harmonic ser

Convert to scientific notation, 1 . If someone is 20 years old, deposits $3...

1 . If someone is 20 years old, deposits $3000 each year into a traditional IRA for 50 years at 6% interest compounded annually, and retires at age 70, how much money will be in th

Examples of logarithms, Examples of logarithms: log 2   8 = 3         ...

Examples of logarithms: log 2   8 = 3                                            since    8 = 2 3 log 10   0.01 = -2                                    since    0.01 = 10

Example of quadratic polynomial, Factor following.                    x ...

Factor following.                    x 2 - 20 x + 100 Solution In this case we've got three terms & it's a quadratic polynomial.  Notice down as well that the constant

How many ounces of tomatoes does mark have, Mark has three 4 1/2 oz cans o...

Mark has three 4 1/2 oz cans of tomatoes and ?ve 8 1/4 oz cans. How many ounces of tomatoes does Mark have? Ignore the fractional parts of the mixed numbers at first and mul

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd