Tangents with polar coordinates - parametric equations, Mathematics

Assignment Help:

Tangents with Polar Coordinates

Here we now require to discuss some calculus topics in terms of polar coordinates.

We will begin with finding tangent lines to polar curves.  In this case we are going to suppose that the equation is in the form r = f (θ). Along with the equation in this form we can in fact make use of the equation for the derivative dy/dx.  We derived while we looked at tangent lines along with parametric equations. Though, to do this requires us to come up with a set of parametric equations to present the curve. In fact this is pretty easy to do.

From our work in the preceding section we have the subsequent set of conversion equations for going from polar coordinates to Cartesian coordinates.

x = r cos θ

y = r sin θ

Now here, we'll use the fact that we were assuming that the equation is in the form r = f (θ).

Substituting this into these equations provides the following set of parametric equations (along with θ like the parameter) for the curve.

From our work in the preceding section we have the subsequent set of conversion equations for going from polar coordinates to Cartesian coordinates.

x= r cosθ

y = r sinθ

Here now, we'll make use of the reality that we're assuming that the equation is in the form r = f (θ).  Substituting this into these equations provides the subsequent set of parametric equations (with θ like the parameter) for the curve.

x = f (θ) cos θ

 y = f (θ) sin θ

 Now, we will require the following derivatives.

 dx / dθ = f' (θ) cosθ - f (θ) sin θ

= dr / dθ (cosθ) - rsinθ

dy/dθ = f′ (θ) sinθ + f (θ) cosθ

 = dr/dθ (sinθ) + r cosθ


Related Discussions:- Tangents with polar coordinates - parametric equations

Triangles, what are rules of triangles?

what are rules of triangles?

Finish the work., six men and Eight boys can finish a piece of work in 14 d...

six men and Eight boys can finish a piece of work in 14 days while  eight men and twelve boys can do it in 10 days. Find the time taken by  1man alone and that by 1boy alone to fin

Smith keeps track of poor work, Smith keeps track of poor work. Often on af...

Smith keeps track of poor work. Often on afternoon it is 5%. If he checks 300 of 7500 instruments what is probability he will find less than 20 substandard?

Properties for exponents, The next thing that we must acknowledge is that a...

The next thing that we must acknowledge is that all of the properties for exponents . This includes the more general rational exponent that we haven't looked at yet. Now the pr

Cylindrical coordinates - three dimensional space, Cylindrical Coordinates ...

Cylindrical Coordinates - Three Dimensional Space Since with two dimensional space the standard (x, y, z) coordinate system is known as the Cartesian coordinate system.  In the

Trigonometry, If a+b+c = 3a , then cotB/2 cotC/2 is equal to

If a+b+c = 3a , then cotB/2 cotC/2 is equal to

Evaluate limit, Evaluate the given limit. Solution: In this quest...

Evaluate the given limit. Solution: In this question none of the earlier examples can help us. There's no factoring or simplifying to accomplish.  We can't rationalize &

#i need help on my math homework its on algabraitle.., The question is: If ...

The question is: If 0.2 x n = 1.4,what is the value of n.

Prove that op=2ap, Two tangents PA and PB are drawn to the circle with cent...

Two tangents PA and PB are drawn to the circle with center O, such that ∠APB=120 o . Prove that OP=2AP. Ans:    Given : - ∠APB = 120o Construction : -Join OP To prove : -

Rejection and acceptance regions, Rejection and Acceptance regions All ...

Rejection and Acceptance regions All possible values which a test statistic may either suppose consistency along with the null hypothesis as acceptance region or lead to the re

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd