Tangents with polar coordinates - parametric equations, Mathematics

Assignment Help:

Tangents with Polar Coordinates

Here we now require to discuss some calculus topics in terms of polar coordinates.

We will begin with finding tangent lines to polar curves.  In this case we are going to suppose that the equation is in the form r = f (θ). Along with the equation in this form we can in fact make use of the equation for the derivative dy/dx.  We derived while we looked at tangent lines along with parametric equations. Though, to do this requires us to come up with a set of parametric equations to present the curve. In fact this is pretty easy to do.

From our work in the preceding section we have the subsequent set of conversion equations for going from polar coordinates to Cartesian coordinates.

x = r cos θ

y = r sin θ

Now here, we'll use the fact that we were assuming that the equation is in the form r = f (θ).

Substituting this into these equations provides the following set of parametric equations (along with θ like the parameter) for the curve.

From our work in the preceding section we have the subsequent set of conversion equations for going from polar coordinates to Cartesian coordinates.

x= r cosθ

y = r sinθ

Here now, we'll make use of the reality that we're assuming that the equation is in the form r = f (θ).  Substituting this into these equations provides the subsequent set of parametric equations (with θ like the parameter) for the curve.

x = f (θ) cos θ

 y = f (θ) sin θ

 Now, we will require the following derivatives.

 dx / dθ = f' (θ) cosθ - f (θ) sin θ

= dr / dθ (cosθ) - rsinθ

dy/dθ = f′ (θ) sinθ + f (θ) cosθ

 = dr/dθ (sinθ) + r cosθ


Related Discussions:- Tangents with polar coordinates - parametric equations

Constant aceleration formulae, a car comes to a stop from a speed of 30m/s ...

a car comes to a stop from a speed of 30m/s in a distance of 804m. The driver brakes so as to produce a decelration of 1/2m per sec sqaured to begin withand then brakes harder to p

Matrix inverse, Here we need to see the inverse of a matrix. Provided a squ...

Here we need to see the inverse of a matrix. Provided a square matrix, A, of size n x n if we can get the other matrix of similar size, B that, AB = BA = I n after that we call

What was the dow at the end of the day after the 2% drop, The Dow Jones Ind...

The Dow Jones Industrial Average fell 2% presently. The Dow began the day at 8,800. What was the Dow at the end of the day after the 2% drop? The Dow lost 2%, so it is worth 9

Prove that prims algorithm produces a minimum spanning tree, Prove that Pri...

Prove that Prim's algorithm produces a minimum spanning tree of a connected weighted graph. Ans: Suppose G be a connected, weighted graph. At each iteration of Prim's algorithm

What is the net area to be painted, An elevated cylindrical shaped water to...

An elevated cylindrical shaped water tower is in require of paint. If the radius of the tower is 10 ft and the tower is 40 ft tall, what is the net area to be painted? (π = 3.14)

Hexagon, how many sides does a regular hexagon have?

how many sides does a regular hexagon have?

Find out the different strategies of multiplications, 1. Give some Class 4 ...

1. Give some Class 4 children around you problems like 15 x 6 to do dentally. Interact with them to find out the different strategies they use for doing it, and note these down.

Simple random sampling, Simple Random Sampling It refers to the samplin...

Simple Random Sampling It refers to the sampling technique whether each and every item of the population is described an equal chance of being included in the sample. Because s

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd