Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Tangent Lines : The first problem which we're going to study is the tangent line problem. Before getting into this problem probably it would be best to define a tangent line.
A tangent line to the function f(x) at the instance x = a is a line which just touches the graph of the function at the point in question & is "parallel" (in some way) to the graph at that point. Consider the graph below.
In this graph the line is a tangent line at the specified point because just it touches the graph at that point and is also "parallel" to the graph at that point. Similarly, at the second point illustrated, the line does just touch the graph at that point, hence it is not "parallel" to the graph at that point & hence it's not a tangent line to the graph at that point.
At the second point illustrated (the point where the line isn't a tangent line) we will sometimes call the line a secant line.
Now, we've used the word parallel a couple of times and we have to probably be a little careful with it. Generally we will think of a line & a graph as being parallel at a point if they are both moving in the same direction at that point. So, in the first point above the graph and the line are moving in the same direction and so we will say they are parallel at that point. At the second point, on the other hand, the line and the graph are not moving in the same direction and so they aren't parallel at that point.
how do i find the diameter of a circle if i have the shaded sectors area of 263.76 and the central angle of that circle is 210 degrees?
express each logariths in terms of log3 P and log3 Q. 1. log3 P^2 Q^3
limit x APProaches infinity (1+1/x)x=e
Assume that Y 1 (t) and Y 2 (t) are two solutions to (1) and y 1 (t) and y 2 (t) are a fundamental set of solutions to the associated homogeneous differential equation (2) so, Y
Graphical Understanding of Derivatives: A ladder 26 feet long is leaning against a wall. The ladder begins to move such that the bottom end moves away from the wall at a const
How do I proceed with a project on Shares and Dividends?
Determine or find out if the sets of vectors are parallel or not. (a) a → = (2,-4,1), b = (-6, 12 , -3) (b) a → = (4,10), b = (2,9) Solution (a) These two vectors
If the area of a small size pizza is 78.5 in 2 , what size pizza box would required for the small pizza? (Note: Pizza boxes are calculated according to the length of one side.)
All differential equations will doesn't have solutions thus it's useful to identify ahead of time if there is a solution or not. Why waste our time trying to get something that doe
The logarithm of the Poisson mixture likelihood (3.10) can be calculated with the following R code: sum(log(outer(x,lambda,dpois) %*% delta)), where delta and lambda are m-ve
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd