Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Tangent Lines : The first problem which we're going to study is the tangent line problem. Before getting into this problem probably it would be best to define a tangent line.
A tangent line to the function f(x) at the instance x = a is a line which just touches the graph of the function at the point in question & is "parallel" (in some way) to the graph at that point. Consider the graph below.
In this graph the line is a tangent line at the specified point because just it touches the graph at that point and is also "parallel" to the graph at that point. Similarly, at the second point illustrated, the line does just touch the graph at that point, hence it is not "parallel" to the graph at that point & hence it's not a tangent line to the graph at that point.
At the second point illustrated (the point where the line isn't a tangent line) we will sometimes call the line a secant line.
Now, we've used the word parallel a couple of times and we have to probably be a little careful with it. Generally we will think of a line & a graph as being parallel at a point if they are both moving in the same direction at that point. So, in the first point above the graph and the line are moving in the same direction and so we will say they are parallel at that point. At the second point, on the other hand, the line and the graph are not moving in the same direction and so they aren't parallel at that point.
Assume A and B are symmetric. Explain why the following are symmetric or not. 1) A^2 - B^2 2) (A+B)(A-B) 3) ABA 4) ABAB 5) (A^2)B
find the area bounded by the curve y=5x^2-4x+3 from the limit x=0 to x=5
what is objective function?
Buses to Acton leave a bus station every 24 minutes. Buses to Barton leave the same bus station every 20 minutes. A bus to Acton and a bus to Barton both leave the bus station at 9
Rolle's Theorem Assume f(x) is a function which satisfies all of the following. 1. f(x) is continuous in the closed interval [a,b]. 2. f(x) is differentiable in the ope
Maria has a slice of pizza that is1/6 the pizza. Ben has a slice of pizza that is 1/3 of the pizza . Maria''s slice is bigger .draw pizzas to show how this possible .
what''s
1+1
Example of inflection point Determine the points of inflection on the curve of the function y = x 3 Solution The only possible inflexion points will happen where
Sam''s sport''s equipment sells footballs. They maximized their profitability last year at (6,4) where x represents employees and P(x) represents profitability. Sam noticed that wh
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd