Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Tangent Lines : The first problem which we're going to study is the tangent line problem. Before getting into this problem probably it would be best to define a tangent line.
A tangent line to the function f(x) at the instance x = a is a line which just touches the graph of the function at the point in question & is "parallel" (in some way) to the graph at that point. Consider the graph below.
In this graph the line is a tangent line at the specified point because just it touches the graph at that point and is also "parallel" to the graph at that point. Similarly, at the second point illustrated, the line does just touch the graph at that point, hence it is not "parallel" to the graph at that point & hence it's not a tangent line to the graph at that point.
At the second point illustrated (the point where the line isn't a tangent line) we will sometimes call the line a secant line.
Now, we've used the word parallel a couple of times and we have to probably be a little careful with it. Generally we will think of a line & a graph as being parallel at a point if they are both moving in the same direction at that point. So, in the first point above the graph and the line are moving in the same direction and so we will say they are parallel at that point. At the second point, on the other hand, the line and the graph are not moving in the same direction and so they aren't parallel at that point.
solution for this project
Patio measures 24 meters square. Patio stone are 30 cm each side. How many stones are required to cover the patio?
how will you explain the listing method?
how do we solve multiple optimal solution
In this part we look at another method to obtain the factors of an expression. In the above you have seen that x 2 - 4x + 4 = (x - 2) 2 or (x - 2)(x - 2). If yo
a) Write a summary on Tower of Hanoi Problem. How can it be solved using recursion ? b) Amit goes to a grocery shop and purchases grocery for Rs. 23.
HOW WE CAN FACTORISE 12X+7X+1
What is shares and dividends?
#quesSuppose we have a stick of length L. We break it once at some point X ~ Unif(0;L). Then we break it again at some point Y ~ Unif(0;X). Use the law of iterated expectation to c
Vertical Tangent for Parametric Equations Vertical tangents will take place where the derivative is not defined and thus we'll get vertical tangents at values of t for that we
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd