Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Tangent Lines : The first problem which we're going to study is the tangent line problem. Before getting into this problem probably it would be best to define a tangent line.
A tangent line to the function f(x) at the instance x = a is a line which just touches the graph of the function at the point in question & is "parallel" (in some way) to the graph at that point. Consider the graph below.
In this graph the line is a tangent line at the specified point because just it touches the graph at that point and is also "parallel" to the graph at that point. Similarly, at the second point illustrated, the line does just touch the graph at that point, hence it is not "parallel" to the graph at that point & hence it's not a tangent line to the graph at that point.
At the second point illustrated (the point where the line isn't a tangent line) we will sometimes call the line a secant line.
Now, we've used the word parallel a couple of times and we have to probably be a little careful with it. Generally we will think of a line & a graph as being parallel at a point if they are both moving in the same direction at that point. So, in the first point above the graph and the line are moving in the same direction and so we will say they are parallel at that point. At the second point, on the other hand, the line and the graph are not moving in the same direction and so they aren't parallel at that point.
approximate the following problem as a mixed integer program. maximize z=e-x1+x1+(x2+1)2 subject to x12+x2 =0
how do you make a tnslation
Q. Definition of Random Variables? Ans. Up to this point, we have been looking at probabilities of different events. Basically, random variables assign numbers to element
From a sheet of cardboard in the shape of a square of side 14 cm, a piece in the shape of letter B is cut off. The curved side of the letter consists of two equal semicircles & the
#k1=f(Tn, Xn), k2=f (Tn + H.Y,Xn + H.Y.k1) Xn+1=Xn + H(a.k1+ b.k2) Find a relation between Y,a and b so that the method is second order consistent.
Properties of Dot Product u → • (v → + w → ) = u → • v → + u → • w → (cv → ) • w → = v → •(cw → ) = c (v → •w → ) v → • w → = w → • v →
Josephine is on an 1,800 calorie per day diet. She tries to remain her intake of fat to no more than 30% of her overall calories. Based on an 1,800 calorie a day diet, what is the
6 7/10+8 9/4
[3+tan20+tan80]/tan20+tan80
Assume that (X, d) is a metric space and let (x1, : : : , x n ) be a nite set of pointsof X. Elustrate , using only the denition of open, that the set X\(x1, : : : , x n ) obtain
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd