Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Tangent Lines : The first problem which we're going to study is the tangent line problem. Before getting into this problem probably it would be best to define a tangent line.
A tangent line to the function f(x) at the instance x = a is a line which just touches the graph of the function at the point in question & is "parallel" (in some way) to the graph at that point. Consider the graph below.
In this graph the line is a tangent line at the specified point because just it touches the graph at that point and is also "parallel" to the graph at that point. Similarly, at the second point illustrated, the line does just touch the graph at that point, hence it is not "parallel" to the graph at that point & hence it's not a tangent line to the graph at that point.
At the second point illustrated (the point where the line isn't a tangent line) we will sometimes call the line a secant line.
Now, we've used the word parallel a couple of times and we have to probably be a little careful with it. Generally we will think of a line & a graph as being parallel at a point if they are both moving in the same direction at that point. So, in the first point above the graph and the line are moving in the same direction and so we will say they are parallel at that point. At the second point, on the other hand, the line and the graph are not moving in the same direction and so they aren't parallel at that point.
199456-9029763
The tenth term in the binomial expansion of (1-1/4)(1-1/5)(1-1/6)...(1-1/n+3) is equal to
1. 10 -2 is equal to 2. If 3n = 27, what is the value of (4n) + 1 3. What is 1/100 of 10000? 4. The formula C=5/9 x (F-32) converts Centigrade temperature from Fa
I have difficuties in working out those 3D trigomentry problems within teh shortest possible time. Are there any tricks to get through such problems as soon as possible?
1) Find the maxima and minima of f(x,y,z) = 2x + y -3z subject to the constraint 2x^2+y^2+2z^2=1 2) Compute the work done by the force ?eld F(x,y,z) = x^2I + y j +y k in moving
how smart do u have to be to get into google
27-125 a power -135a +225a power2
Nine minus five times a number, x, is no less than 39. Which of the subsequent expressions represents all the possible values of the number? Translate the sentence, "Nine minus
Given the following decision tree, perform the tasks listed below 1. Simulate the route through the test market and produce results for twenty simulations, calculating the
Company A and Company B have spent a lot of money on research to develop a cure for the common cold. Winter is approaching and there is certainly going to be a lot of demand for th
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd