Tangent lines, Mathematics

Assignment Help:

Recall also which value of the derivative at a specific value of t provides the slope of the tangent line to the graph of the function at that time, t. Thus, if for some time t the velocity occurs to be 30 m/s the slope of the tangent line to the graph of the velocity is 3.92.

We could carry on in this fashion and pick various values of v and calculate the slope of the tangent line for such values of the velocity. Although, let's take a slightly additionally organized approach to that. Let's first identify the values of the velocity which will have zero slope or horizontal tangent lines. These are easy adequate to determine. All we require to do is set the derivative equivalent to zero and resolve for v.

In the case of our illustration we will have only one value of the velocity that will have horizontal tangent lines, v = 50 m/s. What it means is that IF (again, there's that word if), for several time t, the velocity occurs to be 50 m/s after that the tangent line at that point will be horizontal. What the slope of the tangent line is at times before and after this point is not identified yet and has no bearing on the slope at this exact time, t.

Thus, if we have v = 50, we identify that the tangent lines will be horizontal. We indicate this on an axis system along with horizontal arrows pointing toward increasing t at the level of v = 50 as demonstrated in the subsequent figure.

182_tangent lines.png

Here, let's find some tangent lines and thus arrows for our graph for some another value of v. At that point the only precise slope that is helpful to us is where the slope horizontal. Consequently instead of going after exact slopes for the rest of the graph we are only aimed at go after general trends in the slope. Is the slope decreasing or increasing? How quick is the slope decreasing or increasing? For this illustration those kinds of trends are extremely easy to find.


Related Discussions:- Tangent lines

Area in polar cordinates, find the area of the region within the cardioid r...

find the area of the region within the cardioid r=1-cos

Normal distribution to approximate binomial distribution, Survey 83% of com...

Survey 83% of community for a park. Randomly select 21 people if they do or do not want a park. Can you use normal distribution to approximate binomial distribution?If so find mean

Trignometry, prove that sin A /cot A + cosec A = 2 + sinA / cot A - cosec A...

prove that sin A /cot A + cosec A = 2 + sinA / cot A - cosec A

Graph and algebraic methods , To answer each question, use the function t(r...

To answer each question, use the function t(r) = d , where t is the time in hours, d is the distance in miles, and r is the rate in miles per hour. a. Sydney drives 10 mi at a c

How far apart are the two boats, Two boats leave the same port at the same ...

Two boats leave the same port at the same time. One travels at a constant speed of 30 km/hr at a bearing of 50° and the other on a bearing of 110° at a constant speed of 26 km/hr.

The quotient of 3d3 and 9d5 is, The quotient of 3d 3 and 9d 5 is The ...

The quotient of 3d 3 and 9d 5 is The key word quotient means division so the problem becomes 1d 3 -5/ 5. Divide the coef?cients:  1d 3 /3d-5 . While dividing like bases, subt

Developing estimation skills in maths, DEVELOPING ESTIMATION SKILLS :  A s...

DEVELOPING ESTIMATION SKILLS :  A study was done with some Class 3 and Class 4 children of five village schools to gauge how well they had understood the standard algorithms. The

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd