Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
The 't' distribution is a theoretical probability distribution. The 't' distribution is symmetrical, bell-shaped, and to some extent similar to the standard normal curve. It has an additional parameter called degree of freedom and is centered at zero. The shape of 't' distribution changes due to the degree of freedom. Degrees of freedom (df) can be any real number greater than zero. Consider the equation X + Y = 4. In this equation once we fix the value of X the value of Y is set automatically so the degree of freedom for this equation is said to be one.
t distribution with n-1 degree of freedom is defined as
t
Where,
= The sample mean
m = Population mean
S = Sample standard deviation
n = The sample size
As shown in the figure below, it is symmetrical like the normal distribution, but its peak is lower than the normal curve and its tail is a little higher above the abscissa than the normal curve.
Figure
The 't' distributions with a smaller degree of freedom have more area in the tails of the distribution than one with a larger degree of freedom. As the degrees of freedom for a 't' distribution get larger and larger, the 't' distribution gets closer and closer to the standard normal distribution. As the df increase, the 't' distribution approaches the standard normal distribution. The standard normal curve is a special case of the 't' distribution when df = ∞ . For practical purposes, the 't' distribution approaches the standard normal distribution relatively quickly, such that when degree of freedom = 30 the two are almost identical. So the best use of 't' distribution is when the degree of freedom is less than 30. It is used instead of the normal distribution whenever the standard deviation is estimated. The 't' distribution has relatively more scores in its tails than does the normal distribution. One more purpose for using 't' distribution is when the population standard deviation is unknown.
Consider the t-distribution with df = 13. What is the area to the right of 1.771?
From the tables, it can be seen that the area is 0.05.
Negative function : Several functions are not positive however. Consider the case of f (x ) =x 2 - 4 on [0,2]. If we utilizes n = 8 and the midpoints for the rectangle height w
Question: Find the quotient and remainder when f(x) = x 5 - x 4 - 4x 3 + 2x + 3 is divided by g(x) = x-2. Make sure the quotient and remainder are clearly identified.
if theta is a positive acute angle and 2sin theta +15cos square theta=7 then find the value of cot theta
Example: A 16 lb object stretches a spring 8/9 ft by itself. Here is no damping as well as no external forces acting on the system. The spring is firstly displaced 6 inches upward
Evaluate the perimeter of the plot of land. a. 260 m b. 340 m c. 360 m d. 320 m To evaluate the perimeter, we must know the length of all sides. According to the dia
A bourbon that is 51 proof is 25.5% alcohol by volume while one that is 82 proof is 41% alcohol. How many liters of 51 proof bourbon must be mixed with 1.0 liter of 82 proof bourbo
Paulina played 3 soccer games on Saturday she drank I juice box during each soccer game how many juice boxes did she drank
Identify the surface for each of the subsequent equations. (a) r = 5 (b) r 2 + z 2 = 100 (c) z = r Solution (a) In two dimensions we are familiar with that this
A graph with a positive slope shows that the variables depicted on the axes goes in the similar directions.
Before we find into finding series solutions to differential equations we require determining when we can get series solutions to differential equations. Therefore, let's start wit
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd