''t'' distribution, Mathematics

Assignment Help:

The 't' distribution is a theoretical probability distribution. The 't' distribution is symmetrical, bell-shaped, and to some extent similar to the standard normal curve. It has an additional parameter called degree of freedom and is centered at zero. The shape of 't' distribution changes due to the degree of freedom. Degrees of freedom (df) can be any real number greater than zero. Consider the equation       X + Y = 4. In this equation once we fix the value of X the value of Y is set automatically so the degree of freedom for this equation is said to be one. 

t distribution with n-1 degree of freedom is defined as

 t

2394_t distribution.png

Where,

          348_computation of covariance ungrouped data2.png     =    The sample mean

         m       =    Population mean

         S       =    Sample standard deviation

         n       =    The sample size

 

As shown in the figure below, it is symmetrical like the normal distribution, but its peak is lower than the normal curve and its tail is a little higher above the abscissa than the normal curve.

Figure 

2087_t distribution1.png

The 't' distributions with a smaller degree of freedom have more area in the tails of the distribution than one with a larger degree of freedom. As the degrees of freedom for a 't' distribution get larger and larger, the 't' distribution gets closer and closer to the standard normal distribution. As the df increase, the 't' distribution approaches the standard normal distribution. The standard normal curve is a special case of the 't' distribution when df =   . For practical purposes, the 't' distribution approaches the standard normal distribution relatively quickly, such that when degree of freedom = 30 the two are almost identical. So the best use of 't' distribution is when the degree of freedom is less than 30. It is used instead of the normal distribution whenever the standard deviation is estimated. The 't' distribution has relatively more scores in its tails than does the normal distribution. One more purpose for using 't' distribution is when the population standard deviation is unknown.

Example 

Consider the t-distribution with df = 13. What is the area to the right of 1.771?

From the tables, it can be seen that the area is 0.05.


Related Discussions:- ''t'' distribution

Triangles, if P is a point in the interior of a triangles ABC,prove that AB...

if P is a point in the interior of a triangles ABC,prove that AB>BC+CA

Lance has 70 cents margaret has 3/4 who has the most money, Lance has 70 ce...

Lance has 70 cents, Margaret has three-fourths of a dollar, Guy has two quarters and a dime, and Bill has six dimes. Who has the most money? Lance has 70 cents. Three-fourths o

Greatest common factor, x 4 - 25 There is no greatest common factor her...

x 4 - 25 There is no greatest common factor here.  Though, notice that it is the difference of two perfect squares. x 4 - 25 = ( x 2 ) 2   - (5) 2 Thus, we can employ

Definition of a function, Definition of a Function Now we need to move...

Definition of a Function Now we need to move into the second topic of this chapter.  Before we do that however we must look a quick definition taken care of.

Geometric mean, When three quantities a, b and c are in G.P., t...

When three quantities a, b and c are in G.P., then the geometric mean "b" is calculated as follows. Since these quantities are in G.P., the r

Precalculuc, evaluate the expression and write the result in the form a + b...

evaluate the expression and write the result in the form a + bi. I^37

Find the probability, Q. Suppose Jessica has 10 pairs of shorts and 5 pair...

Q. Suppose Jessica has 10 pairs of shorts and 5 pairs of jeans in her drawer. How many ways could she pick out something to wear for the day? What is the probability that she pick

Variance, Variance Consider the example of investment opportunities. Th...

Variance Consider the example of investment opportunities. The expected gains were Rs.114 and Rs.81 respectively. The fact is that an investor also looks at the dispersion befo

Jay bought twenty-five $0.37 stamps how much did he spend, Jay bought twent...

Jay bought twenty-five $0.37 stamps. How much did he spend? To ?nd how much Jay spent, you must multiply the cost of each stamp ($0.37) through the number of stamps purchased (

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd