SYSTEMS OF ODE, Mathematics

Assignment Help:
Problem 1 Let ~x0 = A~x and y
0 = B~y be two 2  2 linear systems of ODE.
(1) Suppose that A and B have the same purely imaginary eigenvalues. Prove that these systems
are topologically conjugate.
(2) Suppose that A and B have di erent purely imaginary eigenvalues. Prove that the ODE
systems are not topologically conjugate.
(3) Suppose A has eigenvalues 0,  and B has eigenvalues 0, . Prove theta the ODE systems are
topologically conjugate if and only if and  have the same sign.
(4) Prove that if A has purely imaginary eigenvalues, and B has real eigenvalues, then the ODE
systems are not topologically conjugate.
(5) Use the information above as well as the theorems from class to provide complete classi cation
of dynamics two-dimensional linear systems of ODE by conjugacy

Related Discussions:- SYSTEMS OF ODE

Triangle inequalities, poa is a straight line in circle,wher o is center of...

poa is a straight line in circle,wher o is center of circle,b is any pointjoined with p.prove that pa>pb

Equilibrium solutions, In the earlier section we modeled a population depen...

In the earlier section we modeled a population depends on the assumption that the growth rate would be a constant. Though, in reality it doesn't make much sense. Obviously a popula

#title.heat loss in a cylindrical pipe., briefly explain how the famous equ...

briefly explain how the famous equation for the loss of heat in a cylindrical pipe is derived

factorial, why zero factorial is equal to on

why zero factorial is equal to one

Geometry, #question.prove that the diagonals of a trapezium divide each oth...

#question.prove that the diagonals of a trapezium divide each other proportionally .

Completely factored polynomial, Factoring polynomials Factoring polynom...

Factoring polynomials Factoring polynomials is done in pretty much the similar manner.  We determine all of the terms which were multiplied together to obtain the given polynom

Proof of alternating series test, Proof of Alternating Series Test With...

Proof of Alternating Series Test With no loss of generality we can assume that the series begins at n =1. If not we could change the proof below to meet the new starting place

Mental math, i dint get how to do math promblems

i dint get how to do math promblems

How to join as maths expert, Sir, With due respect,I, beg to state that I ...

Sir, With due respect,I, beg to state that I want to join as a maths expert and earn some money. I would be grateful to you if you guide me in this regard.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd