Systems of equations revisited, Mathematics

Assignment Help:

Systems of Equations Revisited

We require doing a quick revisit of systems of equations. Let's establish with a general system of equations.

a11 x1 + a12 x2 +................+a1n xn = b1

a21 x1 + a22 x2 +.............. +a2n xn  = b2

...................

an1 x1 + an2 x2 +............... +ann xn  = bn                              ...................(1)

Here, covert each side in a vector to find,

1410_Systems of Equations Revisited.png

The left side of such equation can be thought of like a matrix multiplication.

845_Systems of Equations Revisited1.png

Simplifying up the notation a little provides,

A x? = b?   ................................(2)

Now there, x? is a vector that elements are the unknowns in the original system of equations.

We take (2) the matrix form of the system of equations (1) and resolving (2) is equal to solving

(1). the solving process is identical. The augmented matrix for (2) is,

A(b?)

Once we contain the augmented matrix we proceed as we did along with a system which hasn't been wrote in matrix form.

We also have the subsequent fact regarding to solutions to (2).

Fact

Provided the system of equation (2) we contain one of the subsequent three possibilities for solutions.

1.   There will be no more solutions.

2.   There will be particularly one solution.

3.   There will be infinitely various solutions.

Actually we can go a little farther here. Because we are assuming that we've got similar number of equations like unknowns the matrix A in (2) is a square matrix and therefore we can calculate its determinant. This provides the following fact.

Fact

Provided the system of equations in (2) we have the subsequent.

1.   If A is nonsingular then there will be particularly one solution to the system.

2.   If A is singular then there will either be no solution or infinitely various solutions to the system.

The matrix form of a homogeneous system is as,

A x?= 0?

 Here 0? is the vector of all zeroes. Under the homogeneous system we are guaranteed to have a solutions, x? = 0?. The fact above for homogeneous systems is so, Fact

Given the homogeneous system (3) we contain the subsequent.

1.   If A is nonsingular then the only solution will be x? = 0?

2.   If A is singular then there will be infinitely many nonzero solutions to the system.


Related Discussions:- Systems of equations revisited

Example of partial fraction decomposition, Example of Partial Fraction Deco...

Example of Partial Fraction Decomposition Evaluate the following integral. ∫ (3x+11 / x 2 -x-6) (dx) Solution: The 1 st step is to factor the denominator so far as

How much did donald earn in commissions last month, Donald sold $5,250 wort...

Donald sold $5,250 worth of latest insurance policies last month. If he receives a commission of 7% on new policies, how much did Donald earn in commissions last month? To ?nd

Distribution of sample means not normal, The distribution of sample means i...

The distribution of sample means is not always a normal distribution. Under what circumstances is the distribution of sample means not normal?

Determine the determinant of matrix, Example Determinant:   Determine ...

Example Determinant:   Determine the determinant of each of the following matrices. Solution : For the 2 x 2 there isn't much to perform other than to plug this in

Analyze the dynamic path of pork prices, A well-known simple model, applica...

A well-known simple model, applicable for analysing boom-bust cycles in agriculture, but extendable to analysing boom-bust cycles in many different areas of economics is the hog cy

Decimals, what is 0.875 of 2282?

what is 0.875 of 2282?

Prove that bd/cd = bf/ce, In the given figure, ∠AEF=∠AFE and E is the mid-p...

In the given figure, ∠AEF=∠AFE and E is the mid-point of CA. Prove that BD/CD = BF/CE Ans:    Draw CG ¦DF In ΔBDF CG ¦ DF ∴ BD/CD = BF/GF     .............(1)

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd