Systems of differential equations, Mathematics

Assignment Help:

In the introduction of this section we briefly talked how a system of differential equations can occur from a population problem wherein we remain track of the population of both the prey and the predator. This makes sense that the number of prey present will influence the number of the predator present. Similarly, the number of predator present will influence the number of prey present. Thus the differential equation which governs the population of either the prey or the predator must in some way based on the population of the other. It will lead to two differential equations which must be solved simultaneously so as to determine the population of the predator and the prey.

The entire point of this is to see that systems of differential equations can occur quite simple from naturally occurring situations. Developing an effectual predator-prey system of differential equations is not the subject of this section. Though, systems can occur from nth order linear differential equations suitably. Before we find this though, let's write down a system and find some terminology out of the way.

We are going to be searching at first order, linear systems of differential equations. These terms implies the same thing which they have meant up to this point. The main derivative anywhere in the system will be a first derivative and each unknown function and their derivatives will only arise to the first power and will not be multiplied with other unknown functions.  Now there is an example of a system of first order, linear differential equations.

x1' = x1 + 2x2

x2' = 3x1 + 2x2

We call this type of system a coupled system as knowledge of x2 is needed in order to get x1 and similarly knowledge of x1 is needed to get x2. We will worry regarding that how to go about solving these presently. At this point we are only involved in becoming familiar along with some of the fundamentals of systems.

Here, as mentioned earlier, we can write an nth order linear differential equation like a system. Let's notice how that can be done.


Related Discussions:- Systems of differential equations

Simulation model, Thorwarth M., Arisha, A. and Harper P., (2009) Simulation...

Thorwarth M., Arisha, A. and Harper P., (2009) Simulation model to investigate flexible workload management for healthcare and servicescape environment, Proceedings of the 2009 Win

Calculus, I need help with my calculus

I need help with my calculus

Twice a number increased by 11 is equal to 32 less three, Twice a number in...

Twice a number increased by 11 is equal to 32 less than three times the number. Find out the number. Let x = the number. Now translate every part of the sentence. Twice a numb

Geometry, How do you solve (17+w)^2 + w^2 = (25+w)^2

How do you solve (17+w)^2 + w^2 = (25+w)^2

Example of developing an understanding, In class 1, the teacher had written...

In class 1, the teacher had written down the digits 0,1, ...., 9 on the board. Then she made all the children recite the corresponding number names. Finally, she made them write th

Example of complex roots, Solve the subsequent IVP. y'' - 4y' + 9y = 0, ...

Solve the subsequent IVP. y'' - 4y' + 9y = 0, y(0) = 0, y'(0) = -8 Solution The characteristic equation for such differential equation is. As:  r 2 - 4r + 9 = 0

Generalized least squares regression, a. Estimate the following model,  C t...

a. Estimate the following model,  C t   =  β 0   +  β 1 * DI t +  ε t             Where C t = Aggregate Consumption Expenditure in Australia, quarterly data for the per

Combinations, Now we take up combinations and its related concepts. C...

Now we take up combinations and its related concepts. Combinations are defined as each of the groups or selections which can be made by taking some or all of the

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd