Symmetry, Algebra

Assignment Help:

In this section we will take a look at something that we utilized back while we where graphing parabolas.  Though, we're going to take a more common view of it this section. Several graphs have symmetry to them.

In graphing Symmetry can be useful an equation as it says that if we know one portion of the graph then we will also know the left over (and symmetric) portion of the graph as well. We utilized this fact while we were graphing parabolas to obatin an extra point of some of the graphs.

In this section we desire to look at three types of symmetry.

1.   A graph is said to be symmetric around the x-axis if whenever ( a, b) is on the graph then hence is ( a, -b ) .  Following is a sketch of a graph which is symmetric around the x-axis.

1551_Symmetry.png

1.      A graph is said to be symmetric around the y-axis if whenever ( a, b) is on the graph then hence is ( -a, b ) .  Following is a sketch of a graph which is symmetric around the y-axis.

2164_Symmetry1.png

3.   A graph is said to be symmetric around the origin if whenever ( a, b ) is on the graph then hence is ( -a, -b ) .  Following is a sketch of a graph which is symmetric around the origin.

1508_Symmetry2.png

Note that most of the graphs don't have any sort of symmetry.  Also, it is possible for a graph to have more than one type of symmetry. For instance the graph of a circle centered at the origin exhibits all three kinds of symmetries.


Related Discussions:- Symmetry

Linear equation in two variables, 2x+y/x+3y=-1/7and 7x+36y=47/3 hence find ...

2x+y/x+3y=-1/7and 7x+36y=47/3 hence find p if xy=p=x/y

Process for finding rational zeroes, Process for Finding Rational Zeroes ...

Process for Finding Rational Zeroes 1. Utilizes the rational root theorem to list all possible rational zeroes of the polynomial P ( x ) 2. Evaluate the polynomial at the nu

Introduction to Algebra, I need help with my Discussion 1 for week 5 please...

I need help with my Discussion 1 for week 5 please. w^2 + 30w + 81 and ac + xc + aw^2 + xw^2 and last one is x^4 - x^3

Use augmented matrices to solve the system, Utilizes augmented matrices to ...

Utilizes augmented matrices to solve out each of the following systems. x - y = 6 -2x + 2 y = 1 Solution Now, already we've worked this one out therefore we know that

Example of equations with more than one variable, y = 4 - 3x /1 + 8x for x....

y = 4 - 3x /1 + 8x for x. Solution This one is very alike to the previous instance.  Here is the work for this problem. y + 8xy = 4 - 3x 8xy + 3x = 4 - y X(8 y +3)

Example of least common denominator, Example :   Solve (x+ 1 / x - 5 )≤ 0 ....

Example :   Solve (x+ 1 / x - 5 )≤ 0 . Solution Before we get into solving these we need to point out that these don't solve in the similar way which we've solve equations

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd