Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Surface Area with Polar Coordinates
We will be searching for at surface area in polar coordinates in this part. Note though that all we're going to do is illustrate the formulas for the surface area as most of these integrals tend to be quite difficult.
We want to locate the surface area of the region found through rotating,
r = f (θ)
α < θ < β
about the x or y-axis.
Like we did in the tangent and arc length sections we will write the curve in terms of a set of parametric equations.
x= r cosθ
= f (θ) cos θ
y = r sin θ
= f (θ) sin θ
If we now make use of the parametric formula for finding the surface area we'll obtain,
S = ∫ 2Πy ds rotation about x-axis
S = ∫ 2Πx ds rotation about y-axis
Where
ds = √r2 + (dr/dθ)2 dθ
r = f (θ) , α < θ < β
Note: since we will pick up a dθ from the ds we'll require to substitute one of the parametric equations in for x or y depending upon the axis of rotation. This will frequently mean that the integrals will be rather unpleasant.
If p,q,r are roots of x^3-3x^2+4x-7=0 (p+2)(q+2)(r+2)=
Taylor Series - Sequences and Series In the preceding section we started looking at writing down a power series presentation of a function. The difficulty with the approach
What lines are invariant under the transformation [(103)(01-4)(001)]? I do not know where to even begin to solve this. Please help!!
what is tangent
how much money will required to buy 200,rupees 25 shares at premium of rupees 2
Solve The form x 2 - bx - c in Factoring Polynomials ? This tutorial will help you factor quadratics that look something like this: x 2 - 11x - 12 (No lead coefficient
A painting was purchased 11 years ago for $26900. It has just been sold for $78000. Calculate the flat rate of appreciation p.a.
do yall help kids in 6th grade
A plane is illustrated by any three points that are in the plane. If a plane consists of the points P = (1, 0,0) , Q = (1,1,1) and R = (2, -1, 3) find out a vector that is orthogo
The center of a national park is located at (0,0). A special nature preserve is bounded by by straight lines connecting the points A at (3,2), B at (5,1), C at (8,4) and D at (6,5)
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd