Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Surface Area with Polar Coordinates
We will be searching for at surface area in polar coordinates in this part. Note though that all we're going to do is illustrate the formulas for the surface area as most of these integrals tend to be quite difficult.
We want to locate the surface area of the region found through rotating,
r = f (θ)
α < θ < β
about the x or y-axis.
Like we did in the tangent and arc length sections we will write the curve in terms of a set of parametric equations.
x= r cosθ
= f (θ) cos θ
y = r sin θ
= f (θ) sin θ
If we now make use of the parametric formula for finding the surface area we'll obtain,
S = ∫ 2Πy ds rotation about x-axis
S = ∫ 2Πx ds rotation about y-axis
Where
ds = √r2 + (dr/dθ)2 dθ
r = f (θ) , α < θ < β
Note: since we will pick up a dθ from the ds we'll require to substitute one of the parametric equations in for x or y depending upon the axis of rotation. This will frequently mean that the integrals will be rather unpleasant.
824 divided by 4
1/2+1/2
Expected Value of Perfect Information In the above problems we have used the expected value criterion to evaluate the decisions under the conditions of risk. But, as long as un
A 4-input Neuron has weights (1,-1, 0, 0.5.Calculate the network output when the following input vectors are applied. For calculation assume: a. f(net) = unipolar bina
9w-w3
sin3xcos5xdx
log6+log-4
find the value of A and B if the following polynomials are perfect square:
How do you find the distributive property any faster?
do you help with Calculus AB AP homework?
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd