Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Surface Area with Polar Coordinates
We will be searching for at surface area in polar coordinates in this part. Note though that all we're going to do is illustrate the formulas for the surface area as most of these integrals tend to be quite difficult.
We want to locate the surface area of the region found through rotating,
r = f (θ)
α < θ < β
about the x or y-axis.
Like we did in the tangent and arc length sections we will write the curve in terms of a set of parametric equations.
x= r cosθ
= f (θ) cos θ
y = r sin θ
= f (θ) sin θ
If we now make use of the parametric formula for finding the surface area we'll obtain,
S = ∫ 2Πy ds rotation about x-axis
S = ∫ 2Πx ds rotation about y-axis
Where
ds = √r2 + (dr/dθ)2 dθ
r = f (θ) , α < θ < β
Note: since we will pick up a dθ from the ds we'll require to substitute one of the parametric equations in for x or y depending upon the axis of rotation. This will frequently mean that the integrals will be rather unpleasant.
Two tanks initially contain 100 liter liquid each. Their initial concentration are listed in the Figure below. At time zero, the input and output valves are opened simultaneously w
Let A be an n×n matrix. Then Show that the set U = {u?R^n : Au = -3un} is a Subspace of R^n
RELATING ADDITION AND SUBTRACTION : In the earlier sections we have stressed the fact that to help children understand addition or subtraction, they need to be exposed to various
Before independence, Bangladesh was called Ceylon East Pakistan Bhutan Bangalore Which of the following countries does not have a monarch as head of state? Canada Australia Eire
Round 468.235 to the nearest hundredth ? The hundredths place is the second digit to the right of the decimal point (3). To decide how to round, you must like as at the digit t
Consider the following linear equations. x1-3x2+x3+x4-x5=8 -2x1+6x2+x3-2x4-4x5=-1 3x1-9x2+8x3+4x4-13x5=49
d
Use the maximum flow algorithm to find a maximum flow and a minimum cut in the given network, where the capacities of arc CF, EC , DE and BD are w = 13, x = 7, y =1, a
Fundamental Theorem of Calculus, Part I If f(x) is continuous on [a,b] so, g(x) = a ∫ x f(t) dt is continuous on [a,b] and this is differentiable on (a, b) and as,
what is fraction?
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd