Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Surface Area with Polar Coordinates
We will be searching for at surface area in polar coordinates in this part. Note though that all we're going to do is illustrate the formulas for the surface area as most of these integrals tend to be quite difficult.
We want to locate the surface area of the region found through rotating,
r = f (θ)
α < θ < β
about the x or y-axis.
Like we did in the tangent and arc length sections we will write the curve in terms of a set of parametric equations.
x= r cosθ
= f (θ) cos θ
y = r sin θ
= f (θ) sin θ
If we now make use of the parametric formula for finding the surface area we'll obtain,
S = ∫ 2Πy ds rotation about x-axis
S = ∫ 2Πx ds rotation about y-axis
Where
ds = √r2 + (dr/dθ)2 dθ
r = f (θ) , α < θ < β
Note: since we will pick up a dθ from the ds we'll require to substitute one of the parametric equations in for x or y depending upon the axis of rotation. This will frequently mean that the integrals will be rather unpleasant.
Fermat's Theorem If f(x) has a relative extrema at x = c and f′(c) exists then x = c is a critical point of f(x). Actually, this will be a critical point that f′(c) =0.
Determine the differential for following. y = t 3 - 4t 2 + 7t Solution Before working any of these we have to first discuss just
RELATING ADDITION AND SUBTRACTION : In the earlier sections we have stressed the fact that to help children understand addition or subtraction, they need to be exposed to various
Describe Square and Diagonal Matrix.
a deposit of 10,000 was made to an account the year you were born after 12 years the account is worth 16,600 what is the simple interest rate did the account earn?
Prove that a simple graph is connected if and only if it has a spanning tree. Ans: First assume that a simple graph G has a spanning tree T. T consists of every node of G.
encoded with the matrix -3 -7 and 4 9. what lights up a soccer stadium? ecoded message: {-3 - 7} {3 2 } {3 6} {57 127} {52 127} {77 173} {23 51)
limit x APProaches infinity (1+1/x)x=e
Bill spent 50% of his savings on school supplies, and then he spent 50% of what was left on lunch. If he had $6 left after lunch, how much did he have in savings at the starting?
can you help me learn faster in school
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd