Surface area with parametric equations, Mathematics

Assignment Help:

Surface Area with Parametric Equations

In this final section of looking at calculus applications with parametric equations we will take a look at determining the surface area of a region obtained by rotating a parametric curve about the x or y-axis.

We will rotate the parametric curve given by,

x = f (t)

y = g (t)

α ≤ t ≤ β

about the x or y-axis. We are going to suppose that the curve is traced out exactly one time as t increases from α to β. In fact at this point there isn't all that much to do. We know earlier that the surface area can be found by utilizing one of the following two formulas depending upon the axis of rotation.

S = ∫ 2Πy ds                                                    rotation about x- axis

S =∫ 2Πx ds                                                     rotation about y-axis

All that we required is a formula for ds to use and from the preceding section we have,

ds = √ [(dx/dt)2 + (dy/dt)2] dt

if x = f (t),

y = g(t), 

α ≤ t ≤ β

which is exactly what we need. 

We will require to be careful with the x or y that is in the original surface area formula.  Back while we first looked at surface area we saw that occasionally we had to substitute for the variable in the integral and at another times we didn't.  This was dependent on the ds which we used.  However in this case, we will all time have to substitute for the variable.  The ds that we use for parametric equations bring in a dt into the integral and meaning of this is that everything needs to be in terms of t. Hence, we will require to substitute the appropriate parametric equation for x or y depending upon the axis of rotation.


Related Discussions:- Surface area with parametric equations

GCF, Find the GCF of 70 and 112

Find the GCF of 70 and 112

Basic Mathematics, Distinguish between Mealy and Moore Machine? Construct a...

Distinguish between Mealy and Moore Machine? Construct a Mealy machine that can output EVEN or ODD According to the total no. of 1''''s encountered is even or odd.on..

Given x+1/x=2cosy then find x^n +1/x^n, Here we know x can only be 1 or -1...

Here we know x can only be 1 or -1. so if it is 1 ans is 2. if x is -1, for n even ans will be 2 if x is -1 and n is odd ans will ne -2. so we can see evenfor negative x also an

Determine the taylor series, Example : Determine the Taylor series for f(x)...

Example : Determine the Taylor series for f(x) = e x about x=0. Solution It is probably one of the easiest functions to get the Taylor series for. We just require recallin

Determine the relative global error, Consider the differential equation giv...

Consider the differential equation give by y′ = -10(y - sin t) (a) Derive by hand exact solution that satis?es the initial condition y(0) = 1. (b) Numerically obtain the s

Coin problem, Explain Coin Problem? How to resolve Coin Problem? Explain br...

Explain Coin Problem? How to resolve Coin Problem? Explain brief...

#title applications of vector and scalar , #question application of vector ...

#question application of vector and scalar in our daily life

Sqrt n- sqrt 8836, How many integers satisfy (sqrt n- sqrt 8836)^2 Solutio...

How many integers satisfy (sqrt n- sqrt 8836)^2 Solution) sqrt 8836 = 94 , let sqrt n=x the equation becomes... (x-94)^2 (x-94)^2 - 1 (x-95)(x-93) hence  93 8649  the number o

Show that af+bd+ce=ae+bf+cd= 1/2 , In figure, the incircle of triangle ABC...

In figure, the incircle of triangle ABC touches the sides BC, CA, and AB at D, E, and F respectively. Show that AF+BD+CE=AE+BF+CD= 1/2   (perimeter of triangle ABC), Ans:

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd