Surface area- applications of integrals, Mathematics

Assignment Help:

Surface Area- Applications of integrals

In this part we are going to look again at solids of revolution. We very firstly looked at them back in Calculus I while we found the volume of the solid of revolution. In this part we wish to find the surface area of this region.

Thus, for the purposes of the derivation of the formula, let us look at rotating the continuous function

y = f (x) in the interval [a, b]

about the x-axis. Below is an outline (sketch) of a function and the solid of revolution we obtain by rotating the function about the x-axis.

2405_Surface Area- Applications of integrals 5.png

We can obtain a formula for the surface area much more like we derived the formula for arc length. We'll initiate by dividing the integral into n equal subintervals of width Πx. On each subinterval we will estimated the function with a straight line that agrees along with the function at the endpoints of the each interval. Below is a sketch (figure) of that for our representative function using n=4.

165_Surface Area- Applications of integrals 4.png

 

Here, rotate the approximations about the x-axis and we get the subsequent solid.

1958_Surface Area- Applications of integrals 3.png

The approximation on every interval provides a distinct portion of the solid and to make this clear every portion is colored differently. Each of these portions are termed as frustums and we know how to find out the surface area of frustums. The surface area of a frustum is illustrated by,

A = 2πrl

r = ½ (r1 + r2)

r1 = radius of right end

r2 = radius of left end

the length of the slant of the frustum.

For the frustum on the interval [xi-1, x1] we contain,

R1 = f(xi)

R2 = f(xi-1)

l = |Pi-1 Pi| (length of the line segment connecting pi and pi-1)

and we know from the preceding section that,

|Pi-1 Pi| = √ 1 + [f' (xi*)]2 Πx

where xi* is some point in,

[Xi-1, Xi]

Previous to writing down the formula for the surface area we are going to presume that Πx is "small" and since f(x) is continuous we can then assume that,

F (xi) » f (xi*) and f (xi-1) » f (xi*)

Thus, the surface area of the frustum on the interval [Xi-1, Xi] is approximately,

Ai = aΠ (f (xi) + f (xi-1) / 2) |pi-1 pi |

» 2Π f (xi*) √ 1+ [f'(xi*)]Πx

After that the surface area of the whole solid is approximately,

2080_Surface Area- Applications of integrals 2.png

and we can obtain the exact surface area by taking the limit as n goes to infinity.

2422_Surface Area- Applications of integrals 1.png

If we wish to we could as well derive a similar formula for rotating x = h(y) on [c,d] about the y-axis. This would provide the following formula.

S = ∫dc 2Π h (y) √ (1+ [h' (y)]2) dy

Though, these are not the "standard" formulas. Note: The roots in both of these formulas are nothing much more than the two ds's we employed in the previous section.

As well, we will replace f(x) with y and h(y) with x. By doing this gives the following two formulas for the surface area.


Related Discussions:- Surface area- applications of integrals

.fractions, what is the difference between North America''s part of the tot...

what is the difference between North America''s part of the total population and Africa''s part

What difference among the areas of the two sections of a, If the areas of t...

If the areas of two sections of a garden are 6a + 2 and 5a, what is the difference among the areas of the two sections within terms of a? Because the question asks for the diff

Fractions, Mr. And Mrs. samuel visited Florida and purchased 120 oranges. ...

Mr. And Mrs. samuel visited Florida and purchased 120 oranges. They gave 1/4 of them to relatives, ate 1/12 of them in the hotel, and gave 1/3 of them to friends. The shipped the

Find the quadratic polynomial, Find the Quadratic polynomial whose sum and ...

Find the Quadratic polynomial whose sum and product of zeros are √2 + 1, 1/ √2 + 1 Ans:    sum = 2  √2 Product = 1 Q.P = X 2 - (sum) x + Product ∴ x 2 - (2 √2 )

Geometry, finding missing values from given triangle diagra m..

finding missing values from given triangle diagra m..

Ratio, find the ratio of 1:4

find the ratio of 1:4

Analysis, Ask question #Minimum 1Let X be a topological space, let p ? X, a...

Ask question #Minimum 1Let X be a topological space, let p ? X, and let F and ? be C-valued functions on X that are continuous at p. Then the functions F + ?, F?, |F|, ReF and ImF

Example of quadratic polynomial, Factor following.                    x ...

Factor following.                    x 2 - 20 x + 100 Solution In this case we've got three terms & it's a quadratic polynomial.  Notice down as well that the constant

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd