Sum of a number of terms in a.p., Mathematics

Assignment Help:

We know that the terms in an A.P. are given by

a, a + d, a + 2d, a + 3d, ........ a + (n - 2)d, a + (n -  1)d

The sum of all these terms which is denoted by "S" is given by

  S = n/2 {2a + (n - 1)d}

This is obtained as follows. We know that

S       =       (a) + (a + d) + (a + 2d) + (a + 3d) + ..... +

                   {(a + (n - 2)d)} + {(a + (n - 1)d)}

Now we reverse the order and write it as shown below.

S       =       (a + (n -1) d) + (a + (n - 2) d) + ......... +

                   (3d + a) +  (2d + a) + (d + a) + a

On adding the respective terms we get

2S     =       {a + a + (n - 1)d} + {a + d + a + (n - 2)d}

                   + ......... + {a + (n - 2)d  + a + d} +

                   {a + (n - 1)d + a} 

That is, we have:

2S     =       {2a + (n - 1)d} + {2a + d + (n - 2)d} +

                    ............... + {2a + d + (n - 2)d} +

                   {2a + (n - 1)d}

Further simplifying we obtain

2s     =       {2a + (n - 1)d} + {2a + d + nd - 2d} +.............. +

                   {2a + d + nd - 2d} + {2a + (n - 1)d}

On simplification we obtain

2s     =       {2a + (n - 1)d} + {2a + nd - d} + ......... +

                   {2a + nd - d} + {2a + (n - 1)d}

2s     =       {2a + (n - 1)d} + {2a + (n - 1)d} + ....... +

                   {2a + (n - 1)d} + {2a + (n - 1)d}

Since 2 + 2 + 2 + 2 = 2(1 + 1 + 1 + 1) = 2 x 4,

2a + (n - 1)d  multiplied n times will be  n.{2a + (n - 1)d}. Therefore,

         2s      =       n.{2a + (n - 1)d}

                            or

s

= n/2 {2a + (n - 1)d}       ............. (a)

Since l = a + (n - 1)d,  equation (a) is also written as

s

= n/2   {a + a + (n - 1)d}  or       

= n/2 {a + l}

Now we will find the sum of 20 terms when a = 5 and d = 2. Substituting these values in the formula, we obtain

s

= 20 /2 {2(5) + (20 - 1)2}
  = 480  

This problem can also be solved by finding the last term which in this case happens to be T20 and it is given by T20 = 5 + (20 - 1)2 = 43. Therefore,

s = n /2 {a + l}
  = 20 /2 {5 + 43} = 480.

We observe that both these methods are essentially the same. With this background let us look at few more examples.

Example 

For the series given below, find the 23rd and the 27th terms.

                   38, 36, 34, .............

We are given the first term that is a = 38. The common difference d is given by 36 - 38 = -2.  The 23rd term is given by

         T23    =       a + 22d

                   =       38 + 22(-2)  

                   =       38 - 44  = - 6  

Similarly the 27th term is given by

         T27    =       a + 26d

                   =       38 + 26(-2)

                   =       38 - 52


Related Discussions:- Sum of a number of terms in a.p.

Proof of: limq -0 sinq/q = 1 trig limits, Proof of: lim q →0 sin q...

Proof of: lim q →0 sin q / q = 1 This proofs of given limit uses the Squeeze Theorem. Though, getting things set up to utilize the Squeeze Theorem can be a somewha

Estimate root of given equations, The positive value of k for which x 2 +K...

The positive value of k for which x 2 +Kx +64 = 0 & x 2 - 8x + k = 0 will have real roots . Ans: x 2 + K x + 64 = 0 ⇒  b 2 -4ac > 0 K 2 - 256 > 0 K

Tangent, construction of tangent when center not known

construction of tangent when center not known

Find the root, (a) Convert z  = - 2 - 2 i to polar form. (b) Find ...

(a) Convert z  = - 2 - 2 i to polar form. (b) Find all the roots of the equation w 3 = - 2 - 2 i . Plot the solutions on an Argand diagram.

Finish the work., six men and Eight boys can finish a piece of work in 14 d...

six men and Eight boys can finish a piece of work in 14 days while  eight men and twelve boys can do it in 10 days. Find the time taken by  1man alone and that by 1boy alone to fin

Find the volume of the cuboids, If the areas of three adjacent faces of cub...

If the areas of three adjacent faces of cuboid are x, y, z respectively, Find the volume of the cuboids. Ans: lb = x , bh = y, hl = z Volume of cuboid = lbh V 2 = l 2 b 2

Find and classify the differential equation, Find and classify the equilibr...

Find and classify the equilibrium solutions of the subsequent differential equation. y' = y 2 - y - 6 Solution The equilibrium solutions are to such differential equati

Discount, outdoor grill- regular price:$360 discount:33 1/3%

outdoor grill- regular price:$360 discount:33 1/3%

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd