Sum of a number of terms in a.p., Mathematics

Assignment Help:

We know that the terms in an A.P. are given by

a, a + d, a + 2d, a + 3d, ........ a + (n - 2)d, a + (n -  1)d

The sum of all these terms which is denoted by "S" is given by

  S = n/2 {2a + (n - 1)d}

This is obtained as follows. We know that

S       =       (a) + (a + d) + (a + 2d) + (a + 3d) + ..... +

                   {(a + (n - 2)d)} + {(a + (n - 1)d)}

Now we reverse the order and write it as shown below.

S       =       (a + (n -1) d) + (a + (n - 2) d) + ......... +

                   (3d + a) +  (2d + a) + (d + a) + a

On adding the respective terms we get

2S     =       {a + a + (n - 1)d} + {a + d + a + (n - 2)d}

                   + ......... + {a + (n - 2)d  + a + d} +

                   {a + (n - 1)d + a} 

That is, we have:

2S     =       {2a + (n - 1)d} + {2a + d + (n - 2)d} +

                    ............... + {2a + d + (n - 2)d} +

                   {2a + (n - 1)d}

Further simplifying we obtain

2s     =       {2a + (n - 1)d} + {2a + d + nd - 2d} +.............. +

                   {2a + d + nd - 2d} + {2a + (n - 1)d}

On simplification we obtain

2s     =       {2a + (n - 1)d} + {2a + nd - d} + ......... +

                   {2a + nd - d} + {2a + (n - 1)d}

2s     =       {2a + (n - 1)d} + {2a + (n - 1)d} + ....... +

                   {2a + (n - 1)d} + {2a + (n - 1)d}

Since 2 + 2 + 2 + 2 = 2(1 + 1 + 1 + 1) = 2 x 4,

2a + (n - 1)d  multiplied n times will be  n.{2a + (n - 1)d}. Therefore,

         2s      =       n.{2a + (n - 1)d}

                            or

s

= n/2 {2a + (n - 1)d}       ............. (a)

Since l = a + (n - 1)d,  equation (a) is also written as

s

= n/2   {a + a + (n - 1)d}  or       

= n/2 {a + l}

Now we will find the sum of 20 terms when a = 5 and d = 2. Substituting these values in the formula, we obtain

s

= 20 /2 {2(5) + (20 - 1)2}
  = 480  

This problem can also be solved by finding the last term which in this case happens to be T20 and it is given by T20 = 5 + (20 - 1)2 = 43. Therefore,

s = n /2 {a + l}
  = 20 /2 {5 + 43} = 480.

We observe that both these methods are essentially the same. With this background let us look at few more examples.

Example 

For the series given below, find the 23rd and the 27th terms.

                   38, 36, 34, .............

We are given the first term that is a = 38. The common difference d is given by 36 - 38 = -2.  The 23rd term is given by

         T23    =       a + 22d

                   =       38 + 22(-2)  

                   =       38 - 44  = - 6  

Similarly the 27th term is given by

         T27    =       a + 26d

                   =       38 + 26(-2)

                   =       38 - 52


Related Discussions:- Sum of a number of terms in a.p.

What was the original price of the coat before tax, Nick paid $68.25 for a ...

Nick paid $68.25 for a coat, including sales tax of 5%. What was the original price of the coat before tax? Since 5% sales tax was added to the cost of the coat, $68.25 is 105%

Applications of de moiver, what are the applications of de moiver''s theore...

what are the applications of de moiver''s theorem in programming and software engineering

Arc length formula - applications of integrals, Arc length Formula L = ...

Arc length Formula L = ∫ ds Where ds √ (1+ (dy/dx) 2 ) dx                                     if y = f(x), a x b ds √ (1+ (dx/dy) 2 ) dy

Find the constant rate of 0.01 , Two people are 50 feet separately.  One of...

Two people are 50 feet separately.  One of them begin walking north at rate so that the angle illustrated in the diagram below is changing at constant rate of 0.01 rad/min. At what

How to solve lim 1-cos(x)/1-cos(4x) as x tends to zero, Use L''hopital''s r...

Use L''hopital''s rule  since lim X-->0  1-cos(x)/1-cos(4x)  is in the indeterminate form 0/0 when we apply the limt so by l''hoptital''s rule differentiate the numerator and den

Simple interest, write a program C++ programming language to calculate sim...

write a program C++ programming language to calculate simple interest, with it algorithm and it flowchart

What was the temperature at midnight, The temperature at 6 P.M. was 31°F. T...

The temperature at 6 P.M. was 31°F. Through midnight, it had dropped 40°F. What was the temperature at midnight? Visualize a number line. The drop from 31° to 0° is 31°. There

Variance, Variance Consider the example of investment opportunities. Th...

Variance Consider the example of investment opportunities. The expected gains were Rs.114 and Rs.81 respectively. The fact is that an investor also looks at the dispersion befo

Proportions, bananas are on sale for 3 pounds for $2. At that price how man...

bananas are on sale for 3 pounds for $2. At that price how many pounds can you buy for $22

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd