Sum of a number of terms in a.p., Mathematics

Assignment Help:

We know that the terms in an A.P. are given by

a, a + d, a + 2d, a + 3d, ........ a + (n - 2)d, a + (n -  1)d

The sum of all these terms which is denoted by "S" is given by

  S = n/2 {2a + (n - 1)d}

This is obtained as follows. We know that

S       =       (a) + (a + d) + (a + 2d) + (a + 3d) + ..... +

                   {(a + (n - 2)d)} + {(a + (n - 1)d)}

Now we reverse the order and write it as shown below.

S       =       (a + (n -1) d) + (a + (n - 2) d) + ......... +

                   (3d + a) +  (2d + a) + (d + a) + a

On adding the respective terms we get

2S     =       {a + a + (n - 1)d} + {a + d + a + (n - 2)d}

                   + ......... + {a + (n - 2)d  + a + d} +

                   {a + (n - 1)d + a} 

That is, we have:

2S     =       {2a + (n - 1)d} + {2a + d + (n - 2)d} +

                    ............... + {2a + d + (n - 2)d} +

                   {2a + (n - 1)d}

Further simplifying we obtain

2s     =       {2a + (n - 1)d} + {2a + d + nd - 2d} +.............. +

                   {2a + d + nd - 2d} + {2a + (n - 1)d}

On simplification we obtain

2s     =       {2a + (n - 1)d} + {2a + nd - d} + ......... +

                   {2a + nd - d} + {2a + (n - 1)d}

2s     =       {2a + (n - 1)d} + {2a + (n - 1)d} + ....... +

                   {2a + (n - 1)d} + {2a + (n - 1)d}

Since 2 + 2 + 2 + 2 = 2(1 + 1 + 1 + 1) = 2 x 4,

2a + (n - 1)d  multiplied n times will be  n.{2a + (n - 1)d}. Therefore,

         2s      =       n.{2a + (n - 1)d}

                            or

s

= n/2 {2a + (n - 1)d}       ............. (a)

Since l = a + (n - 1)d,  equation (a) is also written as

s

= n/2   {a + a + (n - 1)d}  or       

= n/2 {a + l}

Now we will find the sum of 20 terms when a = 5 and d = 2. Substituting these values in the formula, we obtain

s

= 20 /2 {2(5) + (20 - 1)2}
  = 480  

This problem can also be solved by finding the last term which in this case happens to be T20 and it is given by T20 = 5 + (20 - 1)2 = 43. Therefore,

s = n /2 {a + l}
  = 20 /2 {5 + 43} = 480.

We observe that both these methods are essentially the same. With this background let us look at few more examples.

Example 

For the series given below, find the 23rd and the 27th terms.

                   38, 36, 34, .............

We are given the first term that is a = 38. The common difference d is given by 36 - 38 = -2.  The 23rd term is given by

         T23    =       a + 22d

                   =       38 + 22(-2)  

                   =       38 - 44  = - 6  

Similarly the 27th term is given by

         T27    =       a + 26d

                   =       38 + 26(-2)

                   =       38 - 52


Related Discussions:- Sum of a number of terms in a.p.

Please solve this question, The number of integral pairs (x,y) satisfying t...

The number of integral pairs (x,y) satisfying the equation x^2=y^2+1294 is a)2 b)3 c)4 d)None of these

Hi, can i get job of teaching maths here

can i get job of teaching maths here

Linear programming, Consider the following linear programming problem: M...

Consider the following linear programming problem: Min (12x 1 +18x 2 )             X 1 + 2x 2 ≤ 40             X 1 ≤ 50             X 1 + X 2 = 40             X

Integers, need answer to integers that equal 36

need answer to integers that equal 36

Parametric equations of parabola., how the parametric equations of parabola...

how the parametric equations of parabola are derived?and what is the condition for the parabola whose equation is in the form of general equation of the two intersecting lines?

Share and dividend, #a invests Rs 15000IN COMPANY PAYING 10%WHEN Rs100 SHAR...

#a invests Rs 15000IN COMPANY PAYING 10%WHEN Rs100 SHARE IS SOLD AT A PREMIUM OF Rs 20 after a yearASOLD SHARES AT Rs80 EACHAND INVESTEDPROCEEDS IN Rs75SHARES SELLING AT Rs 100 WZI

Compute the break-even quantities, The revenue and cost functions for produ...

The revenue and cost functions for producing and selling quantity x for a certain production facility are given below. R(x) = 16x - x 2 C(x) = 20 + 4x a)  Determine the p

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd