Substitutions at bernoulli equations, Mathematics

Assignment Help:

In the prior section we looked at Bernoulli Equations and noticed that in order to solve them we required to use the substitution v = y1-n. By using this substitution we were capable to convert the differential equation in a form which we could deal along with but, linear in this case. In this section we need to see a couple of other substitutions which can be used to reduce several differential equations down to a solvable form.

The first substitution we'll take a seem at will need the differential equation to be in the create,

y' = F(y/x)

First order differential equations which can be written in this form are termed as homogeneous differential equations. Remember that we will generally have to do several rewriting in order to place the differential equation in the exact form.

Once we have verified as the differential equation is a homogeneous differential equation and we've gotten this written in the exact form we will use the subsequent substitution.

n (x) = y/x

We can then rewrite this as,

 y = xn

 And after that remembering that both y and v are functions of x we can utilize the product rule to calculate,

y′ = n + xn′

In this substitution the differential equation is like,

n + xn′ = F(n)

⇒ xn′ = F(n) - n

⇒ dv/ F(v) - v = dx/x

When we can notice with a small rewrite of the new differential equation we will have a separable differential equation after the substitution.


Related Discussions:- Substitutions at bernoulli equations

Mathematics Warm-Ups for CCSS, Ask question #Minimum 100 words accepted wha...

Ask question #Minimum 100 words accepted what is a ratio

Example of inflection point - set theory and calculus, Need help, Determine...

Need help, Determine the points of inflection on the curve of the function y = x 3

Area with polar coordinates - parametric equations, Area with Polar Coordin...

Area with Polar Coordinates In this part we are going to look at areas enclosed via polar curves.  Note also that we said "enclosed by" in place of "under" as we usually have

Explain polynomials, P OLYNOMIALS : It is  not  once  nor  twice  b...

P OLYNOMIALS : It is  not  once  nor  twice  but  times  without  number  that the  same ideas make  their  appearance in the  world. 1.  Find the value for K for which

Advantages and limitations of game theory, Advantages And Limitations Of Ga...

Advantages And Limitations Of Game Theory Advantage Game theory assists us to learn how to approach and understand a conflict condition and to develop the decision making

Find the number., There is a number. If the sum of digits is 14, and if 29 ...

There is a number. If the sum of digits is 14, and if 29 is subtracted from the number, the digits become equal. Find the number.

Algebra, Evaluate: 30 - 12÷3×2 =

Evaluate: 30 - 12÷3×2 =

Demerits and merits -the arithmetic mean or a.m, Demerits and merits of the...

Demerits and merits of the measures of central tendency The arithmetic mean or a.m Merits i.  It employs all the observations given ii. This is a very useful

Solving an equation using multiplication and division, Solving an equation ...

Solving an equation using Multiplication and Division       A variable is a symbol that represents a number. Usually we use the letters like n , t , or x for variables. For

Parent, Sam has 18 marbles. Dean has 3 marbles. Dean has ---- as many marbl...

Sam has 18 marbles. Dean has 3 marbles. Dean has ---- as many marbles as Sam?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd