Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
In the prior section we looked at Bernoulli Equations and noticed that in order to solve them we required to use the substitution v = y1-n. By using this substitution we were capable to convert the differential equation in a form which we could deal along with but, linear in this case. In this section we need to see a couple of other substitutions which can be used to reduce several differential equations down to a solvable form.
The first substitution we'll take a seem at will need the differential equation to be in the create,
y' = F(y/x)
First order differential equations which can be written in this form are termed as homogeneous differential equations. Remember that we will generally have to do several rewriting in order to place the differential equation in the exact form.
Once we have verified as the differential equation is a homogeneous differential equation and we've gotten this written in the exact form we will use the subsequent substitution.
n (x) = y/x
We can then rewrite this as,
y = xn
And after that remembering that both y and v are functions of x we can utilize the product rule to calculate,
y′ = n + xn′
In this substitution the differential equation is like,
n + xn′ = F(n)
⇒ xn′ = F(n) - n
⇒ dv/ F(v) - v = dx/x
When we can notice with a small rewrite of the new differential equation we will have a separable differential equation after the substitution.
Use the simplex method to solve the following LP Problem. Max Z = 107x1+x2+2x3 Subject to 14x1+x2-6x3+3x4=7 16x1+x2-6x3 3x1-x2-x3 x1,x2,x3,x4 >=0
y=mx+c
Application of rate change Brief set of examples concentrating on the rate of change application of derivatives is given in this section. Example Find out all the point
Example of Graphing Equations: Example: By using the above figure, find out the distance traveled if the average speed is 20 mph and the time traveled is 40 minutes. T
three times the first of the three consecutive odd integers is 3 more than twice the third integer. find the third integer.
can i known the all equations under this lesson with explanations n examples. please..
Example Suppose the demand and cost functions are given by Q = 21 - 0.1P and C = 200 + 10Q Where, Q - Quantity sold
4x+8=32
$25/month; 6%(12); 3 years
finite or infinite 1]A={4,5,6,....}
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd