Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
In the prior section we looked at Bernoulli Equations and noticed that in order to solve them we required to use the substitution v = y1-n. By using this substitution we were capable to convert the differential equation in a form which we could deal along with but, linear in this case. In this section we need to see a couple of other substitutions which can be used to reduce several differential equations down to a solvable form.
The first substitution we'll take a seem at will need the differential equation to be in the create,
y' = F(y/x)
First order differential equations which can be written in this form are termed as homogeneous differential equations. Remember that we will generally have to do several rewriting in order to place the differential equation in the exact form.
Once we have verified as the differential equation is a homogeneous differential equation and we've gotten this written in the exact form we will use the subsequent substitution.
n (x) = y/x
We can then rewrite this as,
y = xn
And after that remembering that both y and v are functions of x we can utilize the product rule to calculate,
y′ = n + xn′
In this substitution the differential equation is like,
n + xn′ = F(n)
⇒ xn′ = F(n) - n
⇒ dv/ F(v) - v = dx/x
When we can notice with a small rewrite of the new differential equation we will have a separable differential equation after the substitution.
RANDOM VARIABLE A variable which assumes different numerical values as a result of random experiments or random occurrences is known as a random variable. The rainfal
A garden shop wishes to prepare a supply of special fertilizer at a minimal cost by mixing two fertilizers, A and B. The mixture is to contain at least 45 units of phosphate at lea
Differentiate following. f ( x ) = sin (3x 2 + x ) Solution It looks as the outside function is the sine & the inside function is 3x 2 +x. The derivative is then.
A car travels at a rate of (4x2 - 2). What is the distance this car will travel in (3x - 8) hours? Use the formula distance = rate × time. Through substitution, distance = (4x2
break even analysis problem and solutions
- Find the total surface area of a frustum of a cone. (Include top and bottom). The equation that I have for volume is v=1/3 pi x h(r^2+rR+R^2) -the equation that I have found fo
2yx+3y=30
Q. What are Complex numbers? Ans. Complex numbers are numbers of the form a + bi, where a and b are real numbers and i is a special number called the imaginary unit, which
Find out the next number in the subsequent pattern. 320, 160, 80, 40, . . . Each number is divided by 2 to find out the next number; 40 ÷ 2 = 20. Twenty is the next number.
Introduction: "Mathematical literacy is an individual's capacity to identify and understand the role that mathematics plays in the world, to make well-founded judgments, and t
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd