Substitutions at bernoulli equations, Mathematics

Assignment Help:

In the prior section we looked at Bernoulli Equations and noticed that in order to solve them we required to use the substitution v = y1-n. By using this substitution we were capable to convert the differential equation in a form which we could deal along with but, linear in this case. In this section we need to see a couple of other substitutions which can be used to reduce several differential equations down to a solvable form.

The first substitution we'll take a seem at will need the differential equation to be in the create,

y' = F(y/x)

First order differential equations which can be written in this form are termed as homogeneous differential equations. Remember that we will generally have to do several rewriting in order to place the differential equation in the exact form.

Once we have verified as the differential equation is a homogeneous differential equation and we've gotten this written in the exact form we will use the subsequent substitution.

n (x) = y/x

We can then rewrite this as,

 y = xn

 And after that remembering that both y and v are functions of x we can utilize the product rule to calculate,

y′ = n + xn′

In this substitution the differential equation is like,

n + xn′ = F(n)

⇒ xn′ = F(n) - n

⇒ dv/ F(v) - v = dx/x

When we can notice with a small rewrite of the new differential equation we will have a separable differential equation after the substitution.


Related Discussions:- Substitutions at bernoulli equations

Properties of definite integral, Properties 1.  ∫ b a f ( x ) dx = -∫ ...

Properties 1.  ∫ b a f ( x ) dx = -∫ b a f ( x ) dx .  We can interchange the limits on any definite integral, all that we have to do is tack a minus sign onto the integral

Math, 1+3+5+7+9+11+13+15+17+19

1+3+5+7+9+11+13+15+17+19

Working definition of continuity , "Working" definition of continuity ...

"Working" definition of continuity A function is continuous in an interval if we can draw the graph from beginning point to finish point without ever once picking up our penci

What would this expression simplify to, If 3x2 is multiplied by the quantit...

If 3x2 is multiplied by the quantity 2x3y raised to the fourth power, what would this expression simplify to? The statement in the question would translate to 3x 2 (2x 3 y) 4 .

Word problem, mark got 15.00 for his birthday he now has 27.00. how much di...

mark got 15.00 for his birthday he now has 27.00. how much did he start with

Evaluate the volume of one orange, An orange has a diameter of 3 inches. Ev...

An orange has a diameter of 3 inches. Evaluate the volume of one orange. (π = 3.14) a. 9.42 in 3 b. 113.04 in 3 c. 28.26 in 3 d. 14.13 in 3 d. To determine the

Time series and analysis, Time Series and Analysis It is the statistic...

Time Series and Analysis It is the statistical or mathematical analysis on past data arranged in a periodic sequence. Decision making and planning in an organization includes

Simplify, X^2 – y^2 – 2y - 1

X^2 – y^2 – 2y - 1

Partial fractions - integration techniques, Partial Fractions - Integration...

Partial Fractions - Integration techniques In this part we are going to take a look at integrals of rational expressions of polynomials and again let's start this section out w

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd