Substitution rule, Mathematics

Assignment Help:

Substitution Rule

∫ f ( g ( x )) g′ ( x ) dx = ∫ f (u ) du,     where, u = g ( x )

we can't do the following integrals through general rule.

69_Substitution.png

This looks considerably more difficult. Though, they aren't too bad once you illustrated how to do them.  Let's begin

69_Substitution.png

In this let's notice that if we let

                                                        u = 6 x3 + 5

and we determine the differential for this we get,

                                                              du = 18x2 dx

Now, let's go back to our integral & notice as well that we can remove every x which exists in the integral and write down the integral totally in terms of u by using both the definition of u & its differential.

   69_Substitution.png     = ∫ (6 x3 + 5)4  (18x2 dx )

                                         = ∫ u (1/4)  du

In the procedure of doing this we've taken an integral which looked very hard and with a rapid substitution we were capable to rewrite the integral in a very easy integral which we can do.

Evaluating the integral gives,

 69_Substitution.png  =          ∫u (1/4) du=(4/5)u(5/4)  + c =     (4/5)(6x3+5)(5/4)+c

As always we can verify our answer with a rapid derivative if we'd like to & don't forget to

"back substitute" & get the integral back into terms of the original variable.

What we've done above is called the Substitution Rule.  Following is the substitution rule in general.

A natural question is how to recognize the correct substitution. Unluckily, the answer is it totally depends on the integral.  Though, there is a general rule of thumb which will work for several of the integrals that we're going to be running across.

While faced with an integral we'll ask ourselves what we know how to integrate. Along the integral above we can quickly recognize that we know how to integrate

                                         ∫ 4  x dx

As a final note we have to point out that frequently (in fact in almost every case) the differential will not seems exactly in the integrand as it did in the example above & sometimes we'll have to do some manipulation of the integrand and/or the differential to obtain all the x's to disappear in the substitution.


Related Discussions:- Substitution rule

Calculate the probability - contingency table, 1) A survey was done where a...

1) A survey was done where a random sample of people 18 and over were asked if they preferred comedies, dramas, or neither. The information gathered was broken down by age group an

Jordan needs help, carlie is now fivetimes as old as henry. in nine years ...

carlie is now fivetimes as old as henry. in nine years her age will be twice henry''s age then. how old is carly now

Find the value a2 + ß2 and (a - ß)2, If  α,β are the zeros of the polynom...

If  α,β are the zeros of the polynomial 2x 2 - 4x + 5 find the value of a) α 2 + β 2   b) (α - β) 2 . Ans : p (x) = 2 x 2 - 4 x + 5           (Ans: a) -1 , b) -6) α + β =

Differential equation, Find the normalized differential equation which has ...

Find the normalized differential equation which has {x, xe^x} as its fundamental set

Natural exponential function , Natural exponential function : There is a e...

Natural exponential function : There is a extremely important exponential function which arises naturally in several places. This function is called as the natural exponential fun

What is 19% of 26, What is 19% of 26? To ?nd out 19% of 26, multiply 26...

What is 19% of 26? To ?nd out 19% of 26, multiply 26 through the decimal equivalent of 19% (0.19); 26 × 0.19 = 4.94.

Puzzle, 0+50x1-60-60x0+10

0+50x1-60-60x0+10

Finding the LCM, what is the LCM of 18, 56 and 104 show working

what is the LCM of 18, 56 and 104 show working

Square of a number added to 25 equals 10 times the number, The square of a ...

The square of a number added to 25 equals 10 times the number. What is the number? Let x = the number.  The statement, "The square of a number added to 25 equals 10 times the n

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd