Substitution rule, Mathematics

Assignment Help:

Substitution Rule

∫ f ( g ( x )) g′ ( x ) dx = ∫ f (u ) du,     where, u = g ( x )

we can't do the following integrals through general rule.

69_Substitution.png

This looks considerably more difficult. Though, they aren't too bad once you illustrated how to do them.  Let's begin

69_Substitution.png

In this let's notice that if we let

                                                        u = 6 x3 + 5

and we determine the differential for this we get,

                                                              du = 18x2 dx

Now, let's go back to our integral & notice as well that we can remove every x which exists in the integral and write down the integral totally in terms of u by using both the definition of u & its differential.

   69_Substitution.png     = ∫ (6 x3 + 5)4  (18x2 dx )

                                         = ∫ u (1/4)  du

In the procedure of doing this we've taken an integral which looked very hard and with a rapid substitution we were capable to rewrite the integral in a very easy integral which we can do.

Evaluating the integral gives,

 69_Substitution.png  =          ∫u (1/4) du=(4/5)u(5/4)  + c =     (4/5)(6x3+5)(5/4)+c

As always we can verify our answer with a rapid derivative if we'd like to & don't forget to

"back substitute" & get the integral back into terms of the original variable.

What we've done above is called the Substitution Rule.  Following is the substitution rule in general.

A natural question is how to recognize the correct substitution. Unluckily, the answer is it totally depends on the integral.  Though, there is a general rule of thumb which will work for several of the integrals that we're going to be running across.

While faced with an integral we'll ask ourselves what we know how to integrate. Along the integral above we can quickly recognize that we know how to integrate

                                         ∫ 4  x dx

As a final note we have to point out that frequently (in fact in almost every case) the differential will not seems exactly in the integrand as it did in the example above & sometimes we'll have to do some manipulation of the integrand and/or the differential to obtain all the x's to disappear in the substitution.


Related Discussions:- Substitution rule

Critical points, Critical Point Definition : We say that x = c is a critic...

Critical Point Definition : We say that x = c is a critical point of function f(x) if f (c) exists & if either of the given are true. f ′ (c ) = 0        OR             f ′ (c

Demonstrates that f ( x ) = 4 x5 + x3 + 7 x - 2 mean value, Demonstrates th...

Demonstrates that f ( x ) = 4 x 5 + x 3 + 7 x - 2 has accurately one real root. Solution From basic Algebra principles we know that since f (x) is a 5 th degree polynomi

The probability that five randomly selected 3-year old snake, The probabili...

The probability that a randomly selected 3-year old garter snake will live to be 4 years old is .54 (assume results are independent).  What is the probability that five randomly se

Problem, a mixture of 40 liters of milk and water contains 10% water.how mu...

a mixture of 40 liters of milk and water contains 10% water.how much water should be added to this so that water my be 20% in the new mixture

Numerical methods, Consider the following interpolation problem: Find a q...

Consider the following interpolation problem: Find a quadratic polynomial p(x) such that p(x0) = y0 p’(x1) = y’1 , p(x2) = y2 where x0 is different from x2 and y0, y’1 , y2 a

How much does it car cost her per year, Ashley's car insurance costs her $1...

Ashley's car insurance costs her $115 per month. How much does it cost her per year? Multiply $115 by 12 because there are 12 months in a year; $115 × $12 = $1,380 per year.

Student, #question. statistics

#question. statistics

Cenamatic, a tire placed on a balancing machine in a service station starts...

a tire placed on a balancing machine in a service station starts from rest an d turns through 4.7 revolutions in 1.2 seconds before reaching its final angular speed Calculate its a

Operations with rational numbers, larry spends 3/4 hours twice a day walkin...

larry spends 3/4 hours twice a day walking and playing with his dog. He spends 1/6 hours twice a day feeding his dog. how much time does larry spend on his dog each day?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd