Substitution rule, Mathematics

Assignment Help:

Substitution Rule

∫ f ( g ( x )) g′ ( x ) dx = ∫ f (u ) du,     where, u = g ( x )

we can't do the following integrals through general rule.

69_Substitution.png

This looks considerably more difficult. Though, they aren't too bad once you illustrated how to do them.  Let's begin

69_Substitution.png

In this let's notice that if we let

                                                        u = 6 x3 + 5

and we determine the differential for this we get,

                                                              du = 18x2 dx

Now, let's go back to our integral & notice as well that we can remove every x which exists in the integral and write down the integral totally in terms of u by using both the definition of u & its differential.

   69_Substitution.png     = ∫ (6 x3 + 5)4  (18x2 dx )

                                         = ∫ u (1/4)  du

In the procedure of doing this we've taken an integral which looked very hard and with a rapid substitution we were capable to rewrite the integral in a very easy integral which we can do.

Evaluating the integral gives,

 69_Substitution.png  =          ∫u (1/4) du=(4/5)u(5/4)  + c =     (4/5)(6x3+5)(5/4)+c

As always we can verify our answer with a rapid derivative if we'd like to & don't forget to

"back substitute" & get the integral back into terms of the original variable.

What we've done above is called the Substitution Rule.  Following is the substitution rule in general.

A natural question is how to recognize the correct substitution. Unluckily, the answer is it totally depends on the integral.  Though, there is a general rule of thumb which will work for several of the integrals that we're going to be running across.

While faced with an integral we'll ask ourselves what we know how to integrate. Along the integral above we can quickly recognize that we know how to integrate

                                         ∫ 4  x dx

As a final note we have to point out that frequently (in fact in almost every case) the differential will not seems exactly in the integrand as it did in the example above & sometimes we'll have to do some manipulation of the integrand and/or the differential to obtain all the x's to disappear in the substitution.


Related Discussions:- Substitution rule

If she remains going at similar rate how long will it take, Susan traveled ...

Susan traveled 114 miles in 2 hours. If she remains going at the similar rate, how long will it take her to go the remaining 285 miles of her trip? There is a 1 in 6 chance of

Level curves or contour curves - three dimensional space, Level Curves or C...

Level Curves or Contour Curves Another topic that we should look at is that of level curves or also known as contour curves. The level curves of the function z = f (x, y) are t

Algebra, solutions for the equation a-b=5

solutions for the equation a-b=5

Chain rule, Chain Rule :   If f(x) and g(x) are both differentiable func...

Chain Rule :   If f(x) and g(x) are both differentiable functions and we describe F(x) = (f. g)(x) so the derivative of F(x) is F′(x) = f ′(g(x)) g′(x).  Proof We will s

Conic-section , How will you find the vertex of a parabola given in 2nd de...

How will you find the vertex of a parabola given in 2nd degree form (the axis of parabola is not parallel to coordinate axes)? Ans) Write the equation in type of standard form.

MATH, I don''t understand so what is 3 (8-x);24-15

I don''t understand so what is 3 (8-x);24-15

Cartesian Coordinates, In the view below of the robot type of Cartesian Coo...

In the view below of the robot type of Cartesian Coordinates, is not the "Z" and "Y" coordinates reversed? http://www.expertsmind.com/topic/robot-types/cartesian-coordinates-91038

Evaluating the function at the point of limit, Calculate the value of the f...

Calculate the value of the following limit. Solution: This first time through we will employ only the properties above to calculate the limit. Firstly we will employ prop

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd