Substitution rule, Mathematics

Assignment Help:

Substitution Rule

∫ f ( g ( x )) g′ ( x ) dx = ∫ f (u ) du,     where, u = g ( x )

we can't do the following integrals through general rule.

69_Substitution.png

This looks considerably more difficult. Though, they aren't too bad once you illustrated how to do them.  Let's begin

69_Substitution.png

In this let's notice that if we let

                                                        u = 6 x3 + 5

and we determine the differential for this we get,

                                                              du = 18x2 dx

Now, let's go back to our integral & notice as well that we can remove every x which exists in the integral and write down the integral totally in terms of u by using both the definition of u & its differential.

   69_Substitution.png     = ∫ (6 x3 + 5)4  (18x2 dx )

                                         = ∫ u (1/4)  du

In the procedure of doing this we've taken an integral which looked very hard and with a rapid substitution we were capable to rewrite the integral in a very easy integral which we can do.

Evaluating the integral gives,

 69_Substitution.png  =          ∫u (1/4) du=(4/5)u(5/4)  + c =     (4/5)(6x3+5)(5/4)+c

As always we can verify our answer with a rapid derivative if we'd like to & don't forget to

"back substitute" & get the integral back into terms of the original variable.

What we've done above is called the Substitution Rule.  Following is the substitution rule in general.

A natural question is how to recognize the correct substitution. Unluckily, the answer is it totally depends on the integral.  Though, there is a general rule of thumb which will work for several of the integrals that we're going to be running across.

While faced with an integral we'll ask ourselves what we know how to integrate. Along the integral above we can quickly recognize that we know how to integrate

                                         ∫ 4  x dx

As a final note we have to point out that frequently (in fact in almost every case) the differential will not seems exactly in the integrand as it did in the example above & sometimes we'll have to do some manipulation of the integrand and/or the differential to obtain all the x's to disappear in the substitution.


Related Discussions:- Substitution rule

probability that the card is a 8 or an ace, A standard deck of cards conta...

A standard deck of cards contains 52 cards. One card is selected at random. Determine a)    The probability that the card is a 8 or an Ace? b)    The probability that the card is

Determination of the regression equation, Determination of the Regression E...

Determination of the Regression Equation The determination of the regression equation such given above is generally done by using a technique termed as "the method of least sq

Determines the first four derivatives of y = cos x, Example    determines t...

Example    determines the first four derivatives for following.                                                                  y = cos x Solution: Again, let's just do so

My daugther needs help, my daughter is having trouble with math she cant un...

my daughter is having trouble with math she cant understand why please help us

Evaluate following. 0ln (1+)excos(1-ex)dx substitution, Evaluate following....

Evaluate following. ∫ 0 ln (1 + π )   e x cos(1-e x )dx Solution The limits are little unusual in this case, however that will happen sometimes therefore don't get

Vectors, calculate the vector LM given l(4,3),m(-1,2)

calculate the vector LM given l(4,3),m(-1,2)

Equal groupings -categories of multiplication, Equal groupings - when we...

Equal groupings - when we want to find how many objects there are in several equal-sized sets. (e.g., if there are 3 baskets, each with 4 bananas, 4 oranges and 4 apples, respec

Find out the average temperature, Find out the average temperature: E...

Find out the average temperature: Example: Find out the average temperature if the subsequent values were recorded: 600°F, 596°F, 597°F, 603°F Solution: Step

Explain graphing equations with a negative slope, Explain Graphing Equation...

Explain Graphing Equations with a Negative Slope? If the slope is a negative fraction, place the negative sign on either the numerator or the denominator. Example graph y = -2/

Precalculus, describe the end behavior of the following function using Limi...

describe the end behavior of the following function using Limit notation f(x)= 2x-1/x-1

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd