Substitution rule, Mathematics

Assignment Help:

Substitution Rule

∫ f ( g ( x )) g′ ( x ) dx = ∫ f (u ) du,     where, u = g ( x )

we can't do the following integrals through general rule.

69_Substitution.png

This looks considerably more difficult. Though, they aren't too bad once you illustrated how to do them.  Let's begin

69_Substitution.png

In this let's notice that if we let

                                                        u = 6 x3 + 5

and we determine the differential for this we get,

                                                              du = 18x2 dx

Now, let's go back to our integral & notice as well that we can remove every x which exists in the integral and write down the integral totally in terms of u by using both the definition of u & its differential.

   69_Substitution.png     = ∫ (6 x3 + 5)4  (18x2 dx )

                                         = ∫ u (1/4)  du

In the procedure of doing this we've taken an integral which looked very hard and with a rapid substitution we were capable to rewrite the integral in a very easy integral which we can do.

Evaluating the integral gives,

 69_Substitution.png  =          ∫u (1/4) du=(4/5)u(5/4)  + c =     (4/5)(6x3+5)(5/4)+c

As always we can verify our answer with a rapid derivative if we'd like to & don't forget to

"back substitute" & get the integral back into terms of the original variable.

What we've done above is called the Substitution Rule.  Following is the substitution rule in general.

A natural question is how to recognize the correct substitution. Unluckily, the answer is it totally depends on the integral.  Though, there is a general rule of thumb which will work for several of the integrals that we're going to be running across.

While faced with an integral we'll ask ourselves what we know how to integrate. Along the integral above we can quickly recognize that we know how to integrate

                                         ∫ 4  x dx

As a final note we have to point out that frequently (in fact in almost every case) the differential will not seems exactly in the integrand as it did in the example above & sometimes we'll have to do some manipulation of the integrand and/or the differential to obtain all the x's to disappear in the substitution.


Related Discussions:- Substitution rule

What is the greatest common factor of 24 and 64, What is the greatest commo...

What is the greatest common factor of 24 and 64? List the factors of 24 and 64. The largest factor that they have in common is the greatest common factor. Factors of 24: 1,

Solving trig equations with calculators, Solving Trig Equations with Calcul...

Solving Trig Equations with Calculators, Part I : The single problem along with the equations we solved out in there is that they pretty much all had solutions which came from a

Factor, 27-125 a power -135a +225a power2

27-125 a power -135a +225a power2

How many different combinations could she form these item, Wendy has 5 pair...

Wendy has 5 pairs of pants and 8 shirts. How many different combinations could she form with these items? Multiply the number of choices for each item to find out the number of

Logarithms, We know that 2 4 = 16 and also that 2 is referred to as ...

We know that 2 4 = 16 and also that 2 is referred to as the base, 4 as the index or power or the exponent. The same if expressed in terms of logarithms would be log 2

Problem solving, Let E; F be 2 points in the plane, EF has length 1, and le...

Let E; F be 2 points in the plane, EF has length 1, and let N be a continuous curve from E to F. A chord of N is a straight line joining 2 points on N. Prove if 0 and N has no cho

Multiplication of complex numbers, Multiplication of complex numbers: ...

Multiplication of complex numbers: Example 1: Combine the subsequent complex numbers: (4 + 3i) + (8 - 2i) - (7 + 3i) =  Solution: (4 + 3i) + (8 - 2i) - (7 + 3i

What is angle pairs in parallel lines, What is Angle Pairs in Parallel Line...

What is Angle Pairs in Parallel Lines ? Next, we introduce several angle pairs formed by transversals which are very important in our study of geometry. Alternate interior an

Mechanical vibrations, While we first looked at mechanical vibrations we lo...

While we first looked at mechanical vibrations we looked at a particular mass hanging on a spring with the possibility of both a damper or/and external force acting upon the mass.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd