Substitution rule, Mathematics

Assignment Help:

Substitution Rule

∫ f ( g ( x )) g′ ( x ) dx = ∫ f (u ) du,     where, u = g ( x )

we can't do the following integrals through general rule.

69_Substitution.png

This looks considerably more difficult. Though, they aren't too bad once you illustrated how to do them.  Let's begin

69_Substitution.png

In this let's notice that if we let

                                                        u = 6 x3 + 5

and we determine the differential for this we get,

                                                              du = 18x2 dx

Now, let's go back to our integral & notice as well that we can remove every x which exists in the integral and write down the integral totally in terms of u by using both the definition of u & its differential.

   69_Substitution.png     = ∫ (6 x3 + 5)4  (18x2 dx )

                                         = ∫ u (1/4)  du

In the procedure of doing this we've taken an integral which looked very hard and with a rapid substitution we were capable to rewrite the integral in a very easy integral which we can do.

Evaluating the integral gives,

 69_Substitution.png  =          ∫u (1/4) du=(4/5)u(5/4)  + c =     (4/5)(6x3+5)(5/4)+c

As always we can verify our answer with a rapid derivative if we'd like to & don't forget to

"back substitute" & get the integral back into terms of the original variable.

What we've done above is called the Substitution Rule.  Following is the substitution rule in general.

A natural question is how to recognize the correct substitution. Unluckily, the answer is it totally depends on the integral.  Though, there is a general rule of thumb which will work for several of the integrals that we're going to be running across.

While faced with an integral we'll ask ourselves what we know how to integrate. Along the integral above we can quickly recognize that we know how to integrate

                                         ∫ 4  x dx

As a final note we have to point out that frequently (in fact in almost every case) the differential will not seems exactly in the integrand as it did in the example above & sometimes we'll have to do some manipulation of the integrand and/or the differential to obtain all the x's to disappear in the substitution.


Related Discussions:- Substitution rule

Derivative with polar coordinates - parametric equations, Derivative with P...

Derivative with Polar Coordinates dy/dx = (dr/dθ (sin θ) + r cos θ) / (dr/dθ (cosθ) - r sinθ) Note: Rather than trying to keep in mind this formula it would possibly be easi

Scatter graphs, Scatter Graphs - A scatter graph is a graph that compr...

Scatter Graphs - A scatter graph is a graph that comprises of points which have been plotted but are not joined through line segments - The pattern of the points will defin

Estimate what percent of decrease for population, The population of Hamden ...

The population of Hamden was 350,000 in 1990. By 2000, the population had decreased to 329,000. What percent of decrease is this? First, ?nd out the number of residents who lef

Compute steady state value of capital - solow growth model, Consider the So...

Consider the Solow growth model as given in the lecture notes using the Cobb-Douglas production function Y t = AK 1-α t L α t a) Set up the underlying nonlinear differen

Product rule (f g)' = f ' g + f g', Product Rule: (f g)′ = f ′ g + f g′ ...

Product Rule: (f g)′ = f ′ g + f g′ As with above the Power Rule, so the Product Rule can be proved either through using the definition of the derivative or this can be proved

What is the minimum number of students, Question 1: What is the minimum...

Question 1: What is the minimum number of students each of whom comes from one of the 50 different states, enrolled in a university to guarantee that there are at least 100 who

Applications of series - differential equations, Series Solutions to Differ...

Series Solutions to Differential Equations Here now that we know how to illustrate function as power series we can now talk about at least some applications of series. There ar

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd