Substitution rule, Mathematics

Assignment Help:

Substitution Rule

∫ f ( g ( x )) g′ ( x ) dx = ∫ f (u ) du,     where, u = g ( x )

we can't do the following integrals through general rule.

69_Substitution.png

This looks considerably more difficult. Though, they aren't too bad once you illustrated how to do them.  Let's begin

69_Substitution.png

In this let's notice that if we let

                                                        u = 6 x3 + 5

and we determine the differential for this we get,

                                                              du = 18x2 dx

Now, let's go back to our integral & notice as well that we can remove every x which exists in the integral and write down the integral totally in terms of u by using both the definition of u & its differential.

   69_Substitution.png     = ∫ (6 x3 + 5)4  (18x2 dx )

                                         = ∫ u (1/4)  du

In the procedure of doing this we've taken an integral which looked very hard and with a rapid substitution we were capable to rewrite the integral in a very easy integral which we can do.

Evaluating the integral gives,

 69_Substitution.png  =          ∫u (1/4) du=(4/5)u(5/4)  + c =     (4/5)(6x3+5)(5/4)+c

As always we can verify our answer with a rapid derivative if we'd like to & don't forget to

"back substitute" & get the integral back into terms of the original variable.

What we've done above is called the Substitution Rule.  Following is the substitution rule in general.

A natural question is how to recognize the correct substitution. Unluckily, the answer is it totally depends on the integral.  Though, there is a general rule of thumb which will work for several of the integrals that we're going to be running across.

While faced with an integral we'll ask ourselves what we know how to integrate. Along the integral above we can quickly recognize that we know how to integrate

                                         ∫ 4  x dx

As a final note we have to point out that frequently (in fact in almost every case) the differential will not seems exactly in the integrand as it did in the example above & sometimes we'll have to do some manipulation of the integrand and/or the differential to obtain all the x's to disappear in the substitution.


Related Discussions:- Substitution rule

Quick help for exam preparation, can you help me with entrance exam for uni...

can you help me with entrance exam for university ? i really need help so quick

George worked from 7:00 am to 3:30 pm how much he earn, George worked from ...

George worked from 7:00 A.M. to 3:30 P.M. with a 45-minute break. If George earns $10.50 per hour and does not obtain paid for his breaks, how much will he earn? (Round to the near

How to multiply two fractions, Q. How to Multiply two Fractions? Multip...

Q. How to Multiply two Fractions? Multiplying fractions is really easy! The rule is: "multiply across"- You multiply the numerators, and you multiply the denominators.

Construct the finite automaton for state transition table, Construct the fi...

Construct the finite automaton for the state transition table given below. Ans: The finite automata is displayed below. The initial state is marked along with arrow sign a

Fraction, Ask question #Minimum 100 words accepted

Ask question #Minimum 100 words accepted

Indices, What is a way to solve indices

What is a way to solve indices

Prove that x2 + y2 - 8x - 10y +39 = 0, If the points (5, 4) and (x, y) are ...

If the points (5, 4) and (x, y) are equidistant from the point (4, 5), prove that x 2 + y 2 - 8x - 10y +39 = 0. Ans :   AP = PB AP 2 = PB 2 (5 - 4) 2 + (4 - 5) 2 = (x

Domain and range of a function , Domain and range of a functio:  One of th...

Domain and range of a functio:  One of the more significant ideas regarding functions is that of the domain and range of a function. In simplest world the domain of function is th

#titlefunction.., provide a real-world example or scenario that can be expr...

provide a real-world example or scenario that can be express as a relation that is not a function

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd