Substitution rule, Mathematics

Assignment Help:

Substitution Rule

∫ f ( g ( x )) g′ ( x ) dx = ∫ f (u ) du,     where, u = g ( x )

we can't do the following integrals through general rule.

69_Substitution.png

This looks considerably more difficult. Though, they aren't too bad once you illustrated how to do them.  Let's begin

69_Substitution.png

In this let's notice that if we let

                                                        u = 6 x3 + 5

and we determine the differential for this we get,

                                                              du = 18x2 dx

Now, let's go back to our integral & notice as well that we can remove every x which exists in the integral and write down the integral totally in terms of u by using both the definition of u & its differential.

   69_Substitution.png     = ∫ (6 x3 + 5)4  (18x2 dx )

                                         = ∫ u (1/4)  du

In the procedure of doing this we've taken an integral which looked very hard and with a rapid substitution we were capable to rewrite the integral in a very easy integral which we can do.

Evaluating the integral gives,

 69_Substitution.png  =          ∫u (1/4) du=(4/5)u(5/4)  + c =     (4/5)(6x3+5)(5/4)+c

As always we can verify our answer with a rapid derivative if we'd like to & don't forget to

"back substitute" & get the integral back into terms of the original variable.

What we've done above is called the Substitution Rule.  Following is the substitution rule in general.

A natural question is how to recognize the correct substitution. Unluckily, the answer is it totally depends on the integral.  Though, there is a general rule of thumb which will work for several of the integrals that we're going to be running across.

While faced with an integral we'll ask ourselves what we know how to integrate. Along the integral above we can quickly recognize that we know how to integrate

                                         ∫ 4  x dx

As a final note we have to point out that frequently (in fact in almost every case) the differential will not seems exactly in the integrand as it did in the example above & sometimes we'll have to do some manipulation of the integrand and/or the differential to obtain all the x's to disappear in the substitution.


Related Discussions:- Substitution rule

Taylor series, If f(x) is an infinitely differentiable function so the Tayl...

If f(x) is an infinitely differentiable function so the Taylor Series of f(x) about x=x 0 is, Recall that, f (0) (x) = f(x) f (n) (x) = nth derivative of f(x)

Calcilate the height of the cone of which the bucket , A bucket of height 8...

A bucket of height 8 cm and made up of copper sheet is in the form of frustum of right circular cone with radii of its lower and upper ends as 3 cm and 9 cm respectively. Calculate

Algebra, Manuel is a cross-country runner for his school’s team. He jogged ...

Manuel is a cross-country runner for his school’s team. He jogged along the perimeter of a rectangular field at his school. The track is a rectangle that has a length that is 3 tim

Algebra, simplify mn+mp+nq+pq /n+p

simplify mn+mp+nq+pq /n+p

Give examples on multiplication rule in probability, Example: Suppose your...

Example: Suppose your football team has 10 returning athletes and 4 new members. How many ways can the coach choose one old player and one new one? Solution:  There are 10 wa

Hyperbolic paraboloid- three dimensional space, Hyperbolic Paraboloid- Thre...

Hyperbolic Paraboloid- Three Dimensional Space The equation which is given here is the equation of a hyperbolic paraboloid. x 2 / a 2 - y 2 / b 2 = z/c Here is a dia

Explain combining negative signs in integers, Explain Combining Negative Si...

Explain Combining Negative Signs in integers? You've learned about positive and negative integers. BASICS :   When you place a negative sign in front of an integer, you get

Mean value theorem find out all the numbers c, Find out all the numbers c t...

Find out all the numbers c that satisfy the conclusions of the Mean Value Theorem for the given function.                                               f ( x ) = x 3 + 2 x 2 -

Estimate weight if telephone pole weighs 11.5 pounds foot, If a telephone p...

If a telephone pole weighs 11.5 pounds per foot, how much does a 32-foot pole weigh? Multiply 11.5 by 32; 11.5 × 32 = 368 pounds.

Sequences and series - calculus, Sequences and Series In this section ...

Sequences and Series In this section we will be taking a look at sequences and infinite series.  In fact, this section will deal approximately exclusively with series.  Though

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd