Substitution rule, Mathematics

Assignment Help:

Substitution Rule

∫ f ( g ( x )) g′ ( x ) dx = ∫ f (u ) du,     where, u = g ( x )

we can't do the following integrals through general rule.

69_Substitution.png

This looks considerably more difficult. Though, they aren't too bad once you illustrated how to do them.  Let's begin

69_Substitution.png

In this let's notice that if we let

                                                        u = 6 x3 + 5

and we determine the differential for this we get,

                                                              du = 18x2 dx

Now, let's go back to our integral & notice as well that we can remove every x which exists in the integral and write down the integral totally in terms of u by using both the definition of u & its differential.

   69_Substitution.png     = ∫ (6 x3 + 5)4  (18x2 dx )

                                         = ∫ u (1/4)  du

In the procedure of doing this we've taken an integral which looked very hard and with a rapid substitution we were capable to rewrite the integral in a very easy integral which we can do.

Evaluating the integral gives,

 69_Substitution.png  =          ∫u (1/4) du=(4/5)u(5/4)  + c =     (4/5)(6x3+5)(5/4)+c

As always we can verify our answer with a rapid derivative if we'd like to & don't forget to

"back substitute" & get the integral back into terms of the original variable.

What we've done above is called the Substitution Rule.  Following is the substitution rule in general.

A natural question is how to recognize the correct substitution. Unluckily, the answer is it totally depends on the integral.  Though, there is a general rule of thumb which will work for several of the integrals that we're going to be running across.

While faced with an integral we'll ask ourselves what we know how to integrate. Along the integral above we can quickly recognize that we know how to integrate

                                         ∫ 4  x dx

As a final note we have to point out that frequently (in fact in almost every case) the differential will not seems exactly in the integrand as it did in the example above & sometimes we'll have to do some manipulation of the integrand and/or the differential to obtain all the x's to disappear in the substitution.


Related Discussions:- Substitution rule

Find out the tangent line to the parametric curve, Find out the tangent lin...

Find out the tangent line(s) to the parametric curve specified by X = t5 - 4t3 Y = t2 At (0,4) Solution Note that there is actually the potential for more than on

Definition of logarithms, Q. Definition of Logarithms? Ans. A loga...

Q. Definition of Logarithms? Ans. A logarithm to the base a of a number x is the power to which a is raised to get x. In equation format: If x = a y , then log a  x

By the last gymnastics competition estimate keri total score, In her last g...

In her last gymnastics competition Keri scored a 5.6 on the floor exercise, 5.85 on the vault, and 5.90 on the balance beam. What was Keri's total score? Keri's three scores re

Finding absolute extrema of f(x) on [a, Finding Absolute Extrema of f(x) on...

Finding Absolute Extrema of f(x) on [a,b] 0.   Confirm that the function is continuous on the interval [a,b]. 1.  Determine all critical points of f(x) which are in the inte

Find the coordinates of c , Plot the points A(2,0) and B (6,0) on a graph p...

Plot the points A(2,0) and B (6,0) on a graph paper. Complete an equilateral triangle ABC such that the ordinate of C be a positive real number .Find the coordinates of C   (Ans: (

Differentiate inside function in chain rule, Differentiate following. f ...

Differentiate following. f ( x ) = sin (3x 2   + x ) Solution It looks as the outside function is the sine & the inside function is 3x 2 +x. The derivative is then.

Transportation problem, matlab code for transportation problem solved by vo...

matlab code for transportation problem solved by vogel''s approximation method

What is the measure of its width if its length is 3 inches, The perimeter o...

The perimeter of a rectangle is 21 inches. What is the measure of its width if its length is 3 inches greater than its width? Let x = the width of the rectangle. Let x + 3 = th

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd