Substitution rule, Mathematics

Assignment Help:

Substitution Rule

∫ f ( g ( x )) g′ ( x ) dx = ∫ f (u ) du,     where, u = g ( x )

we can't do the following integrals through general rule.

69_Substitution.png

This looks considerably more difficult. Though, they aren't too bad once you illustrated how to do them.  Let's begin

69_Substitution.png

In this let's notice that if we let

                                                        u = 6 x3 + 5

and we determine the differential for this we get,

                                                              du = 18x2 dx

Now, let's go back to our integral & notice as well that we can remove every x which exists in the integral and write down the integral totally in terms of u by using both the definition of u & its differential.

   69_Substitution.png     = ∫ (6 x3 + 5)4  (18x2 dx )

                                         = ∫ u (1/4)  du

In the procedure of doing this we've taken an integral which looked very hard and with a rapid substitution we were capable to rewrite the integral in a very easy integral which we can do.

Evaluating the integral gives,

 69_Substitution.png  =          ∫u (1/4) du=(4/5)u(5/4)  + c =     (4/5)(6x3+5)(5/4)+c

As always we can verify our answer with a rapid derivative if we'd like to & don't forget to

"back substitute" & get the integral back into terms of the original variable.

What we've done above is called the Substitution Rule.  Following is the substitution rule in general.

A natural question is how to recognize the correct substitution. Unluckily, the answer is it totally depends on the integral.  Though, there is a general rule of thumb which will work for several of the integrals that we're going to be running across.

While faced with an integral we'll ask ourselves what we know how to integrate. Along the integral above we can quickly recognize that we know how to integrate

                                         ∫ 4  x dx

As a final note we have to point out that frequently (in fact in almost every case) the differential will not seems exactly in the integrand as it did in the example above & sometimes we'll have to do some manipulation of the integrand and/or the differential to obtain all the x's to disappear in the substitution.


Related Discussions:- Substitution rule

What kinds classroom activities help children to learn maths, What kinds of...

What kinds of classroom activities can you think of for helping children to make groups of 5 and 10? Once they have enough practice with such activities, children can be helped

Draw tangent graph y = sec ( x ), G raph y = sec ( x ) Solution: As wi...

G raph y = sec ( x ) Solution: As with tangent we will have to avoid x's for which cosine is zero (recall that sec x =1/ cos x) Secant will not present at

Find a power series representation for the function, Find a power series re...

Find a power series representation for the subsequent function and find out its interval of convergence. g (x) = 1/1+x 3 Solution What we require to do here is to rela

Special forms of polynomial, Special Forms There are a number of nice s...

Special Forms There are a number of nice special forms of some polynomials which can make factoring easier for us on occasion. Following are the special forms. a 2 + 2ab +

Application of probability in business, Application of Probability in Busin...

Application of Probability in Business 1. Business games of chance for illustration, Raffles Lotteries. 2. Insurance firms: this is generally done when a new client or prop

Using substitution solving polynomial equations, Using Substitution Solving...

Using Substitution Solving Polynomial Equations ? Solve : (x 3 + 4) 2 - 15 (x 3 + 4) + 36 = 0. You might be tempted to multiply everything out and factor. However, there

Determine principal strains and direction , A 100 by 150 mm rectangular pla...

A 100 by 150 mm rectangular plate is deformed as shown in the following figure. All dimensions shown in the figure are in millimeters.  Determine at point Q: (a) the strain compone

Multiplication example, Example  Multiply 3x 5 + 4x 3 + 2x - 1 ...

Example  Multiply 3x 5 + 4x 3 + 2x - 1 and x 4 + 2x 2 + 4. The product is given by 3x 5 . (x 4 + 2x 2 + 4) + 4x 3 . (x 4 + 2x 2 + 4) + 2x .

What is a mixed number, Q. What is a Mixed Number? Ans. A mixed nu...

Q. What is a Mixed Number? Ans. A mixed number is an integer, along with a fractional part, which has the same sign. (Therefore, a mixed number always has two parts.) M

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd