Substitution rule, Mathematics

Assignment Help:

Substitution Rule

∫ f ( g ( x )) g′ ( x ) dx = ∫ f (u ) du,     where, u = g ( x )

we can't do the following integrals through general rule.

69_Substitution.png

This looks considerably more difficult. Though, they aren't too bad once you illustrated how to do them.  Let's begin

69_Substitution.png

In this let's notice that if we let

                                                        u = 6 x3 + 5

and we determine the differential for this we get,

                                                              du = 18x2 dx

Now, let's go back to our integral & notice as well that we can remove every x which exists in the integral and write down the integral totally in terms of u by using both the definition of u & its differential.

   69_Substitution.png     = ∫ (6 x3 + 5)4  (18x2 dx )

                                         = ∫ u (1/4)  du

In the procedure of doing this we've taken an integral which looked very hard and with a rapid substitution we were capable to rewrite the integral in a very easy integral which we can do.

Evaluating the integral gives,

 69_Substitution.png  =          ∫u (1/4) du=(4/5)u(5/4)  + c =     (4/5)(6x3+5)(5/4)+c

As always we can verify our answer with a rapid derivative if we'd like to & don't forget to

"back substitute" & get the integral back into terms of the original variable.

What we've done above is called the Substitution Rule.  Following is the substitution rule in general.

A natural question is how to recognize the correct substitution. Unluckily, the answer is it totally depends on the integral.  Though, there is a general rule of thumb which will work for several of the integrals that we're going to be running across.

While faced with an integral we'll ask ourselves what we know how to integrate. Along the integral above we can quickly recognize that we know how to integrate

                                         ∫ 4  x dx

As a final note we have to point out that frequently (in fact in almost every case) the differential will not seems exactly in the integrand as it did in the example above & sometimes we'll have to do some manipulation of the integrand and/or the differential to obtain all the x's to disappear in the substitution.


Related Discussions:- Substitution rule

Polar to cartesian conversion formulas, Polar to Cartesian Conversion Formu...

Polar to Cartesian Conversion Formulas x = r cos Θ y = r sin Θ Converting from Cartesian is more or less easy.  Let's first notice the subsequent. x 2 + y 2   = (r co

Find out height of the box which will give maximum volume, We contain a pie...

We contain a piece of cardboard i.e. 14 inches by 10 inches & we're going to cut out the corners as illustrates below and fold up the sides to form a box, also illustrated below. F

How many more miles did he run today, Kevin ran 6.8 miles yesterday and 10....

Kevin ran 6.8 miles yesterday and 10.4 miles presently. How many more miles did he run today? To ?nd out how many more miles he ran today, subtract yesterday's miles from today

Find the discount factors and linear interpolation, Question: All rates...

Question: All rates should be calculated to 3 decimal places in % (e.g. 1.234%), the discount factors to 5 decimal places (e.g. 0.98765), and the bond prices to 3 decimal place

Compound interest, you have RM5O,OOO to invest,and two fund that you''d li...

you have RM5O,OOO to invest,and two fund that you''d like to invest in.The You-Risk-It Fund yields 14% interest.The Extra-Dull Fund yields 6% interest.Besause of college financial-

Ravens played 25 home games how many games did they win, The Ravens played ...

The Ravens played 25 home games this year. They had 9 losses and 2 ties. How many games did they win? Eleven games are accounted for along with the losses and ties (9 + 2 = 11)

Decision trees and bayes theory, Decision Trees And Bayes Theory This m...

Decision Trees And Bayes Theory This makes an application of Bayes' Theorem to resolve typical decision problems. It is examined a lot so it is significant to clearly understan

QM II, A HOSPITAL CURRENTLY ORDERS SALINE AT THE BEGINNING OF EACH MONTH. T...

A HOSPITAL CURRENTLY ORDERS SALINE AT THE BEGINNING OF EACH MONTH. THIS MONTH, THEY HAD 178 BAGS OF SALINE IN STOCK AND ORDERED 1,277 BAGS. DEMAND FOR SALINE IS NORMALLY DISTRIBUTE

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd