Substitution rule, Mathematics

Assignment Help:

Substitution Rule

∫ f ( g ( x )) g′ ( x ) dx = ∫ f (u ) du,     where, u = g ( x )

we can't do the following integrals through general rule.

69_Substitution.png

This looks considerably more difficult. Though, they aren't too bad once you illustrated how to do them.  Let's begin

69_Substitution.png

In this let's notice that if we let

                                                        u = 6 x3 + 5

and we determine the differential for this we get,

                                                              du = 18x2 dx

Now, let's go back to our integral & notice as well that we can remove every x which exists in the integral and write down the integral totally in terms of u by using both the definition of u & its differential.

   69_Substitution.png     = ∫ (6 x3 + 5)4  (18x2 dx )

                                         = ∫ u (1/4)  du

In the procedure of doing this we've taken an integral which looked very hard and with a rapid substitution we were capable to rewrite the integral in a very easy integral which we can do.

Evaluating the integral gives,

 69_Substitution.png  =          ∫u (1/4) du=(4/5)u(5/4)  + c =     (4/5)(6x3+5)(5/4)+c

As always we can verify our answer with a rapid derivative if we'd like to & don't forget to

"back substitute" & get the integral back into terms of the original variable.

What we've done above is called the Substitution Rule.  Following is the substitution rule in general.

A natural question is how to recognize the correct substitution. Unluckily, the answer is it totally depends on the integral.  Though, there is a general rule of thumb which will work for several of the integrals that we're going to be running across.

While faced with an integral we'll ask ourselves what we know how to integrate. Along the integral above we can quickly recognize that we know how to integrate

                                         ∫ 4  x dx

As a final note we have to point out that frequently (in fact in almost every case) the differential will not seems exactly in the integrand as it did in the example above & sometimes we'll have to do some manipulation of the integrand and/or the differential to obtain all the x's to disappear in the substitution.


Related Discussions:- Substitution rule

Volume, #given that the perimeter of the buildig is 108m and the area of th...

#given that the perimeter of the buildig is 108m and the area of the floor is 138m, find the volume of the screed in m3 if it is 30mm thick

Radius of rhim, how long is the radius of car tyre?

how long is the radius of car tyre?

Developing an understanding ones tens and more, DEVELOPING AN UNDERSTANDING...

DEVELOPING AN UNDERSTANDING :  The other day I was showing the children's book '203 Cats' to my 7-year-old niece. She had recently learnt how to write large numerals in her school

Extrema- minimum and maximum values, Extrema : Note as well that while we ...

Extrema : Note as well that while we say an "open interval around x = c " we mean that we can discover some interval ( a, b ) , not involving the endpoints, such that a Also,

factorial, why zero factorial is equal to on

why zero factorial is equal to one

Example of pythagorean theorem, Any 15 foot ladder is resting against the w...

Any 15 foot ladder is resting against the wall. The bottom is at first 10 feet away from the wall & is being pushed in the direction of the wall at a rate of 1 ft/sec. How rapid is

Circles, Circles In this section we are going to take a rapid look at ...

Circles In this section we are going to take a rapid look at circles.  Though, prior to we do that we have to give a quick formula that expectantly you'll recall seeing at som

Triganometry, Ask question #Minimum 100 words what is the hypotunus of a r...

Ask question #Minimum 100 words what is the hypotunus of a right bangled triangle a=5@ b=25 find c accwhepted#

System of linear equations, create a system of linear equations that has (2...

create a system of linear equations that has (2,3)as a solution.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd