Substitution rule, Mathematics

Assignment Help:

Substitution Rule

∫ f ( g ( x )) g′ ( x ) dx = ∫ f (u ) du,     where, u = g ( x )

we can't do the following integrals through general rule.

69_Substitution.png

This looks considerably more difficult. Though, they aren't too bad once you illustrated how to do them.  Let's begin

69_Substitution.png

In this let's notice that if we let

                                                        u = 6 x3 + 5

and we determine the differential for this we get,

                                                              du = 18x2 dx

Now, let's go back to our integral & notice as well that we can remove every x which exists in the integral and write down the integral totally in terms of u by using both the definition of u & its differential.

   69_Substitution.png     = ∫ (6 x3 + 5)4  (18x2 dx )

                                         = ∫ u (1/4)  du

In the procedure of doing this we've taken an integral which looked very hard and with a rapid substitution we were capable to rewrite the integral in a very easy integral which we can do.

Evaluating the integral gives,

 69_Substitution.png  =          ∫u (1/4) du=(4/5)u(5/4)  + c =     (4/5)(6x3+5)(5/4)+c

As always we can verify our answer with a rapid derivative if we'd like to & don't forget to

"back substitute" & get the integral back into terms of the original variable.

What we've done above is called the Substitution Rule.  Following is the substitution rule in general.

A natural question is how to recognize the correct substitution. Unluckily, the answer is it totally depends on the integral.  Though, there is a general rule of thumb which will work for several of the integrals that we're going to be running across.

While faced with an integral we'll ask ourselves what we know how to integrate. Along the integral above we can quickly recognize that we know how to integrate

                                         ∫ 4  x dx

As a final note we have to point out that frequently (in fact in almost every case) the differential will not seems exactly in the integrand as it did in the example above & sometimes we'll have to do some manipulation of the integrand and/or the differential to obtain all the x's to disappear in the substitution.


Related Discussions:- Substitution rule

John and charlie have a whole of 80 dollars he has x dollar, John and Charl...

John and Charlie have a whole of 80 dollars. John has x dollars. How much money does Charlie have? This problem translates to the expression 42 + (11 - 9) ÷ 2. Using order of o

Why is it important the the enlightenment grew out, Why is it important the...

Why is it important the the Enlightenment grew out of the salons and other meeting places of Europe? Who was leading the charge? Why was this significant? Where there any names or

What is approximation, approximate value is the precise or the accurate val...

approximate value is the precise or the accurate value which is measured  to the actual value.., approximation is how close the measured value is to the actual value , for example

Errors are useful in learning maths, Errors Are Useful :  While teaching c...

Errors Are Useful :  While teaching children, you must have found theft making mistakes off and on. How do you respond to the errors'? What do they tell you about the child-failur

Construction , construct of tangents a circle from an external point when ...

construct of tangents a circle from an external point when its centre is not known

Geometric mean, When three quantities a, b and c are in G.P., t...

When three quantities a, b and c are in G.P., then the geometric mean "b" is calculated as follows. Since these quantities are in G.P., the r

Unit normal vector - three dimensional space, Unit Normal Vector - Three Di...

Unit Normal Vector - Three Dimensional Space The unit normal vector is illustrated to be, N (t) = → T' (t) / (|| T → ' (t)||) The unit normal is orthogonal or normal or

FRACTION, HOW TO ADD MIXED FRACTION

HOW TO ADD MIXED FRACTION

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd