Substitution rule, Mathematics

Assignment Help:

Substitution Rule

∫ f ( g ( x )) g′ ( x ) dx = ∫ f (u ) du,     where, u = g ( x )

we can't do the following integrals through general rule.

69_Substitution.png

This looks considerably more difficult. Though, they aren't too bad once you illustrated how to do them.  Let's begin

69_Substitution.png

In this let's notice that if we let

                                                        u = 6 x3 + 5

and we determine the differential for this we get,

                                                              du = 18x2 dx

Now, let's go back to our integral & notice as well that we can remove every x which exists in the integral and write down the integral totally in terms of u by using both the definition of u & its differential.

   69_Substitution.png     = ∫ (6 x3 + 5)4  (18x2 dx )

                                         = ∫ u (1/4)  du

In the procedure of doing this we've taken an integral which looked very hard and with a rapid substitution we were capable to rewrite the integral in a very easy integral which we can do.

Evaluating the integral gives,

 69_Substitution.png  =          ∫u (1/4) du=(4/5)u(5/4)  + c =     (4/5)(6x3+5)(5/4)+c

As always we can verify our answer with a rapid derivative if we'd like to & don't forget to

"back substitute" & get the integral back into terms of the original variable.

What we've done above is called the Substitution Rule.  Following is the substitution rule in general.

A natural question is how to recognize the correct substitution. Unluckily, the answer is it totally depends on the integral.  Though, there is a general rule of thumb which will work for several of the integrals that we're going to be running across.

While faced with an integral we'll ask ourselves what we know how to integrate. Along the integral above we can quickly recognize that we know how to integrate

                                         ∫ 4  x dx

As a final note we have to point out that frequently (in fact in almost every case) the differential will not seems exactly in the integrand as it did in the example above & sometimes we'll have to do some manipulation of the integrand and/or the differential to obtain all the x's to disappear in the substitution.


Related Discussions:- Substitution rule

Vectors, calculate the vector LM given l(4,3),m(-1,2)

calculate the vector LM given l(4,3),m(-1,2)

Precalculus, how does sin of x equal negative 1/3

how does sin of x equal negative 1/3

Market testing, what are the dangers of not market testing a product

what are the dangers of not market testing a product

Lorie, A bourbon that is 51 proof is 25.5% alcohol by volume while one that...

A bourbon that is 51 proof is 25.5% alcohol by volume while one that is 82 proof is 41% alcohol. How many liters of 51 proof bourbon must be mixed with 1.0 liter of 82 proof bourbo

Problem solver, a bathroom measure 250 cm by 175 cm calculate the side of t...

a bathroom measure 250 cm by 175 cm calculate the side of the largest square tile that can tile the floor

What was the original price of the frying pan, Cory purchased a frying pan ...

Cory purchased a frying pan which was on sale for 30% off. She saved $3.75 along with the sale. What was the original price of the frying pan? Use a proportion to ?nd out the o

Error analysis: describle and correct the error in plotting, to plot (5,-4)...

to plot (5,-4), start at (0,0) and move 5 units left and 4 units down

Video games, Should video game companies continue to alter their products t...

Should video game companies continue to alter their products to include other functions, such as e-mail

Mensuration, if area of a rectangle is 27 sqmtr and it perimeter is 24 m fi...

if area of a rectangle is 27 sqmtr and it perimeter is 24 m find the length and breath#

Tangents, find a common tangent to two circles

find a common tangent to two circles

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd