Substitution rule, Mathematics

Assignment Help:

Substitution Rule

∫ f ( g ( x )) g′ ( x ) dx = ∫ f (u ) du,     where, u = g ( x )

we can't do the following integrals through general rule.

69_Substitution.png

This looks considerably more difficult. Though, they aren't too bad once you illustrated how to do them.  Let's begin

69_Substitution.png

In this let's notice that if we let

                                                        u = 6 x3 + 5

and we determine the differential for this we get,

                                                              du = 18x2 dx

Now, let's go back to our integral & notice as well that we can remove every x which exists in the integral and write down the integral totally in terms of u by using both the definition of u & its differential.

   69_Substitution.png     = ∫ (6 x3 + 5)4  (18x2 dx )

                                         = ∫ u (1/4)  du

In the procedure of doing this we've taken an integral which looked very hard and with a rapid substitution we were capable to rewrite the integral in a very easy integral which we can do.

Evaluating the integral gives,

 69_Substitution.png  =          ∫u (1/4) du=(4/5)u(5/4)  + c =     (4/5)(6x3+5)(5/4)+c

As always we can verify our answer with a rapid derivative if we'd like to & don't forget to

"back substitute" & get the integral back into terms of the original variable.

What we've done above is called the Substitution Rule.  Following is the substitution rule in general.

A natural question is how to recognize the correct substitution. Unluckily, the answer is it totally depends on the integral.  Though, there is a general rule of thumb which will work for several of the integrals that we're going to be running across.

While faced with an integral we'll ask ourselves what we know how to integrate. Along the integral above we can quickly recognize that we know how to integrate

                                         ∫ 4  x dx

As a final note we have to point out that frequently (in fact in almost every case) the differential will not seems exactly in the integrand as it did in the example above & sometimes we'll have to do some manipulation of the integrand and/or the differential to obtain all the x's to disappear in the substitution.


Related Discussions:- Substitution rule

Properties of dot product - proof, Properties of Dot Product - proof P...

Properties of Dot Product - proof Proof of: If v → • v → = 0 then v → = 0 → This is a pretty simple proof.  Let us start with v → = (v1 , v2 ,.... , vn) a

Divides a given line-segment externally in the ratio of 1:2, Divides a give...

Divides a given line-segment externally in the ratio of 1:2 Construction: i )Draw BX making an actueangle at B. ii) Starting from B, mark 2 equal points on BX as shown in the f

Wave through the origin always has a slope of one or not, Can you explain t...

Can you explain that a wave through the origin always has a slope of one or not?

expected value, Describe the distribution of sample means shapefor samples...

Describe the distribution of sample means shapefor samples of n=36 selected from a population with a mean of μ=100 and a standard deviation of o=12.  , expected value, and standard

Acid solution, A 90% acid solution is mixed with a 97% acid solution to obt...

A 90% acid solution is mixed with a 97% acid solution to obtain 21 litres of a 95% solution. Findout the quantity of every solutions to get the resultant mixture.

Find out if the following series converges or diverges, Determine or find o...

Determine or find out if the following series converges or diverges.  If it converges find out its value. Solution We first require the partial sums for this series.

Second order differential equation, Write the subsequent 2nd order differen...

Write the subsequent 2nd order differential equation as a system of first order, linear differential equations. 2 y′′ - 5 y′ + y = 0  y (3) = 6  y′ (3) = -1  We can wri

Squeeze theorem (sandwich theorem and the pinching theorem), Squeeze Theore...

Squeeze Theorem (Sandwich Theorem and the Pinching Theorem) Assume that for all x on [a, b] (except possibly at x = c ) we have,                                 f ( x )≤ h (

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd