Structure of bipolar junction transistor, Electrical Engineering

Assignment Help:

Structure of Bipolar junction transistor:

 A BJT contains three differently doped semiconductor regions that are: emitter region, base region and collector region. These regions are p type, n type and p type correspondingly, in a PNP and n type, p type and n type correspondingly, in a NPN transistor. Every semiconductor region is connected to a terminal, properly entitled as: emitter (E), base (B) and collector (C).

The base is physically located among the emitter and the collector and is created from lightly doped and high resistivity material. The collector that surrounds the emitter region, creating it almost not possible for the electrons injected into the base region to escape being collected, so making the resulting value of α very close to unity, and so, providing the transistor a large β. A cross section view of a BJT points out that the collector-base junction has a much larger area than as compared to emitter-base junction.

The bipolar junction transistor, different from other transistors, is generally not a symmetrical device. Here this means that interchanging the collector and the emitter makes the transistor leave the forward active mode and begin to operate in reverse mode. Because the internal structure of transistor is generally optimized for forward-mode operation, interchanging the collector and the emitter makes the values of α and β in reverse operation much smaller than as compared to those in forward operation; frequently the α of the reverse mode is lower than 0.5. The lack of symmetry is primarily because of the doping ratios of the emitter and the collector. The emitter is heavily doped, whereas the collector is lightly doped, permitting a large reverse bias voltage to be applied before the collector-base junction breaks down. In normal operation the collector-base junction is reverse biased. The cause the emitter is heavily doped is to increase the emitter injection efficiency: the ratio of carriers injected via the emitter to those injected by the base. For high current gain, most of the carriers injected into the emitter-base junction have to come from the emitter.


Related Discussions:- Structure of bipolar junction transistor

Voltage quality standards - kpi, Voltage Quality Standards - KPI The t...

Voltage Quality Standards - KPI The term voltage quality (or power quality) is an umbrella concept for a variety of disturbances within a power system. The quality of delivere

Electronics, Figure 1(a) shows a simple one-stage MOSFET amplifier. The inp...

Figure 1(a) shows a simple one-stage MOSFET amplifier. The input-output relationship is graphed in Figure 1(b), where the solid curve indicates operation in the saturated region an

Semiconductors, Why do potential barriers breaks when a breakdown voltage i...

Why do potential barriers breaks when a breakdown voltage is application to semiconductor

Find the rms induced voltage, A two-pole, three-phase, 60-Hz, wye-connected...

A two-pole, three-phase, 60-Hz, wye-connected, round-rotor synchronous generator has N a = 12 turns per phase in each armature phase winding and flux per pole of 0.8Wb. Find the r

Issue in sub-transmission and distribution systems, Issue In Sub-Transmissi...

Issue In Sub-Transmission and Distribution Systems The major issue in Sub-transmission and Distribution systems or rather the issue confronting the power sector as an overall,

Prove modified algorithm better than the elevator algorithm, A slight modif...

A slight modification of the elevator algorithm for scheduling disk requests is to always scan in the same direction, In what respect is this modified algorithm better than the ele

Explain 8259 pin diagram, Explain 8259 Pin Diagram. The 8259A adds 8 ve...

Explain 8259 Pin Diagram. The 8259A adds 8 vectored priority encoded interrupts to the microprocessor. It can be expanded to 64 interrupt requests by using one master 8259A and

PFC, How do you size power factor units at 11kV

How do you size power factor units at 11kV

Explain microprocessor development system, Explain Microprocessor developme...

Explain Microprocessor development system. Microprocessor development system: Computer systems consist of undergone many changes lately. Machines which once filled large area

Evaluate maximum directive gain, Q. For a pyramidal-horn antenna, the maxim...

Q. For a pyramidal-horn antenna, the maximum directive gain is given by occurring when the aperture dimensions are A ∼ = √3λLandB = 0.81A. The principal-plane beam- widths

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd