Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
While the SL2 languages include some surprisingly complex languages, the strictly 2-local automata are, nevertheless, quite limited. In a strong sense, they are almost memoryless-the behavior of the automaton depends only on the most recent symbol it has read.
Certainly there are many languages of interest that are not SL2, that will require a more sophisticated algorithm than strictly 2-local automata.
One obvious way of extending the SL2 automata is to give them more memory. Consider, for instance, the language of algebraic expressions over decimal integer constants in which we permit negative constants, indicated by a pre?x ‘-'. Note that this is not the same as allowing ‘-' to be used as a unary operator. In the latter case we would allow any number of ‘-'s to occur in sequence (indicating nested negation), in the case in hand, we will allow ‘-'s to occur only singly (as either a subtraction operator or a leading negative sign) or in pairs (as a subtraction operator followed by a leading negative sign). We will still forbid embedded spaces and the use of ‘+' as a sign.
This is not an SL2 language. If we must permit ‘--' anywhere, then we would have to permit arbitrarily long sequences of ‘-'s. We can recognize this language, though, if we widen the automaton's scanning window to three symbols.
Exercise: Give a construction that converts a strictly 2-local automaton for a language L into one that recognizes the language L r . Justify the correctness of your construction.
Define the following concept with an example: a. Ambiguity in CFG b. Push-Down Automata c. Turing Machine
The generalization of the interpretation of strictly local automata as generators is similar, in some respects, to the generalization of Myhill graphs. Again, the set of possible s
Sketch an algorithm for the universal recognition problem for SL 2 . This takes an automaton and a string and returns TRUE if the string is accepted by the automaton, FALSE otherwi
Theorem The class of recognizable languages is closed under Boolean operations. The construction of the proof of Lemma 3 gives us a DFA that keeps track of whether or not a give
how to convert a grammar into GNF
wht is pumping lema
can you plz help with some project ideas relatede to DFA or NFA or anything
Let L1 and L2 be CGF. We show that L1 ∩ L2 is CFG too. Let M1 be a decider for L1 and M2 be a decider for L2 . Consider a 2-tape TM M: "On input x: 1. copy x on the sec
We'll close our consideration of regular languages by looking at whether (certain) problems about regular languages are algorithmically decidable.
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd