Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
While the SL2 languages include some surprisingly complex languages, the strictly 2-local automata are, nevertheless, quite limited. In a strong sense, they are almost memoryless-the behavior of the automaton depends only on the most recent symbol it has read.
Certainly there are many languages of interest that are not SL2, that will require a more sophisticated algorithm than strictly 2-local automata.
One obvious way of extending the SL2 automata is to give them more memory. Consider, for instance, the language of algebraic expressions over decimal integer constants in which we permit negative constants, indicated by a pre?x ‘-'. Note that this is not the same as allowing ‘-' to be used as a unary operator. In the latter case we would allow any number of ‘-'s to occur in sequence (indicating nested negation), in the case in hand, we will allow ‘-'s to occur only singly (as either a subtraction operator or a leading negative sign) or in pairs (as a subtraction operator followed by a leading negative sign). We will still forbid embedded spaces and the use of ‘+' as a sign.
This is not an SL2 language. If we must permit ‘--' anywhere, then we would have to permit arbitrarily long sequences of ‘-'s. We can recognize this language, though, if we widen the automaton's scanning window to three symbols.
Proof (sketch): Suppose L 1 and L 2 are recognizable. Then there are DFAs A 1 = (Q,Σ, T 1 , q 0 , F 1 ) and A 2 = (P,Σ, T 2 , p 0 , F 2 ) such that L 1 = L(A 1 ) and L 2 = L(
i have some questions in automata, can you please help me in solving in these questions?
(c) Can you say that B is decidable? (d) If you somehow know that A is decidable, what can you say about B?
Perfect shuffle permutation
The computation of an SL 2 automaton A = ( Σ, T) on a string w is the maximal sequence of IDs in which each sequential pair of IDs is related by |- A and which starts with the in
Computation of a DFA or NFA without ε-transitions An ID (q 1 ,w 1 ) computes (qn,wn) in A = (Q,Σ, T, q 0 , F) (in zero or more steps) if there is a sequence of IDs (q 1
Automata and Compiler (1) [25 marks] Let N be the last two digits of your student number. Design a finite automaton that accepts the language of strings that end with the last f
This was one of the ?rst substantial theorems of Formal Language Theory. It's maybe not too surprising to us, as we have already seen a similar equivalence between LTO and SF. But
Another way of interpreting a strictly local automaton is as a generator: a mechanism for building strings which is restricted to building all and only the automaton as an inexh
Suppose A = (Σ, T) is an SL 2 automaton. Sketch an algorithm for recognizing L(A) by, in essence, implementing the automaton. Your algorithm should work with the particular automa
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd