Strictly 2 - local automata, Theory of Computation

Assignment Help:

We will assume that the string has been augmented by marking the beginning and the end with the symbols ‘?' and ‘?' respectively and that these symbols do not occur in the input alphabet. The automaton starts with the window positioned over the beginning of string marker and the first symbol of the word (if any). At each step, it looks up the pair of symbols in the window in a table of pairs of symbols. It halts when the end of string marker is in the window (if not sooner).

The S-R element is a set/reset latch. It holds the current output which is initially set to TRUE by driving the START input FALSE. (The inverting circle and vinculum over the signal name indicate an input that is activated when it is driven FALSE.) It is then is reset to FALSE if any pair of symbols in the window fails to match some pair in the lookup table (if output of the ‘∈' element ever goes FALSE). Once reset it remains FALSE. Since the output will be FALSE at the end of the string if it ever goes FALSE during the computation, we may just as well assume that the automaton halts when the first pair that is not in the lookup table is encountered.

Formally, all we need do to specify a particular instance of a strictly 2-local automaton is to give the alphabet and list the pairs of symbols in the internal table.


Related Discussions:- Strictly 2 - local automata

Strictly local generation automaton, Another way of interpreting a strictly...

Another way of interpreting a strictly local automaton is as a generator: a mechanism for building strings which is restricted to building all and only the automaton as an inexh

Instantaneous description of an fsa, De?nition Instantaneous Description of...

De?nition Instantaneous Description of an FSA: An instantaneous description (ID) of a FSA A = (Q,Σ, T, q 0 , F) is a pair (q,w) ∈ Q×Σ* , where q the current state and w is the p

Boolean operations - class of recognizable languages, Theorem The class of ...

Theorem The class of recognizable languages is closed under Boolean operations. The construction of the proof of Lemma 3 gives us a DFA that keeps track of whether or not a give

#dfa, Give DFA''s accepting the following languages over the alphabet {0,1}...

Give DFA''s accepting the following languages over the alphabet {0,1}: i. The set of all strings beginning with a 1 that, when interpreted as a binary integer, is a multiple of 5.

Alphabets - strings and representation, A finite, nonempty ordered set will...

A finite, nonempty ordered set will be called an alphabet if its elements are symbols, or characters. A finite sequence of symbols from a given alphabet will be called a string ove

Applying the pumping lemma, Applying the pumping lemma is not fundamentally...

Applying the pumping lemma is not fundamentally di?erent than applying (general) su?x substitution closure or the non-counting property. The pumping lemma is a little more complica

Decision problems, In Exercise 9 you showed that the recognition problem an...

In Exercise 9 you showed that the recognition problem and universal recognition problem for SL2 are decidable. We can use the structure of Myhill graphs to show that other problems

Reducibility among problems, A common approach in solving problems is to tr...

A common approach in solving problems is to transform them to different problems, solve the new ones, and derive the solutions for the original problems from those for the new ones

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd