Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Warnock's Algorithm
An interesting approach to the hidden-surface problem was presented by Warnock. His method does not try to decide exactly what is happening in the scene but rather just tries to get the display right. As the resolution of the display increases, the amount of work which the algorithm must do to get the scene right also increases, (this is also true for scan-line algorithms). The algorithm divides the screen up into sample areas. In some sample areas it will be easy to decide what to do. If there are no faces within the area, then it is left blank. If the nearest polygon completely covers it, then it can be filled in with the colour of that polygon. If neither of these conditions holds, then the algorithm subdivides the sample area into smaller sample areas and considers each of them in turn. This process is repeated as needed. It stops when the sample area satisfies one of the two simple cases or when the sample area is only a single pixel (which can be given the colour of the foremost polygon). The process can also be allowed to continue to half or quarter pixel-sized sample areas, whose colour may be average over a pixel to provide antialiasing.
The test for whether a polygon surrounds or is disjoint from the sample area is much like a clipping test to see if the polygon sides cross the sample-area boundaries. Actually the minimax test can be employed to identify many of the disjoint polygons. A simple test for whether a polygon is in front of another is a comparison of the z coordinates of the polygon planes at the corners of the sample area. At each subdivision, information learned in the previous test can be used to simplify the problem. Polygons which are disjoint from the tested sample area will also be disjoint from all of the sub-areas and do not need further testing. Likewise, a polygon which surrounds the sample area will also surround the sub-areas.
2. Write a note on i) devising ii) validating and iii) testing of algorithms.
why the space increase in less time programs
Write the algorithm for Binary search. Also apply this algorithm on the following data. 22, 44, 11, 88, 33, 55, 77, 66
Q. What is the smallest value of n such that an algorithm whose running time is 100n2 runs faster than an algorithm whose running time is 2n on the same machine. A n
(a) Write (delay ) as a special form for (lambda () ) and (force ), as discussed in class. (b) Write (stream-cons x y) as a special form, as discussed in class. (c) Write
State the Introduction to pseudocode No specific programming language is referred to; development of algorithms by using pseudocode uses generic descriptions of branching, loop
Write an algorithm to print all even numbers in descending order and draw the flowchart
for(int i = 0; i for (int j = n - 1; j >= i ; j--){ System.out.println(i+ " " + j);
Q. Write down an algorithm to merge the two sorted arrays into the third array. Do not perform the sort function in the third array. Ans: void m
Let us assume a file of 5 records that means n = 5 And k is a sorted array of keys of those 5 records. Let key = 55, low = 0, high = 4 Iteration 1: mid = (0+4)/2 = 2
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd