Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Warnock's Algorithm
An interesting approach to the hidden-surface problem was presented by Warnock. His method does not try to decide exactly what is happening in the scene but rather just tries to get the display right. As the resolution of the display increases, the amount of work which the algorithm must do to get the scene right also increases, (this is also true for scan-line algorithms). The algorithm divides the screen up into sample areas. In some sample areas it will be easy to decide what to do. If there are no faces within the area, then it is left blank. If the nearest polygon completely covers it, then it can be filled in with the colour of that polygon. If neither of these conditions holds, then the algorithm subdivides the sample area into smaller sample areas and considers each of them in turn. This process is repeated as needed. It stops when the sample area satisfies one of the two simple cases or when the sample area is only a single pixel (which can be given the colour of the foremost polygon). The process can also be allowed to continue to half or quarter pixel-sized sample areas, whose colour may be average over a pixel to provide antialiasing.
The test for whether a polygon surrounds or is disjoint from the sample area is much like a clipping test to see if the polygon sides cross the sample-area boundaries. Actually the minimax test can be employed to identify many of the disjoint polygons. A simple test for whether a polygon is in front of another is a comparison of the z coordinates of the polygon planes at the corners of the sample area. At each subdivision, information learned in the previous test can be used to simplify the problem. Polygons which are disjoint from the tested sample area will also be disjoint from all of the sub-areas and do not need further testing. Likewise, a polygon which surrounds the sample area will also surround the sub-areas.
Q. Write down the binary search algorithm and trace to search element 91 in following given list: 13 30 62 73 81 88 91
Q. Explain any three methods or techniques of representing polynomials using arrays. Write which method is most efficient or effective for representing the following polynomials.
`
The above 3 cases are also considered conversely while the parent of Z is to the right of its own parent. All the different kind of cases can be illustrated through an instance. Le
After going through this unit, you will be able to: • define and declare Lists; • understand the terminology of Singly linked lists; • understand the terminology of Doubly
Implement multiple queues in a single dimensional array. Write algorithms for various queue operations for them.
Linear search is not the most efficient way to search an item within a collection of items. Though, it is extremely simple to implement. Furthermore, if the array elements are arra
Q. Write down the algorithm which does depth first search through an un-weighted connected graph. In an un-weighted graph, would breadth first search or depth first search or neith
Write down the algorithm of quick sort. An algorithm for quick sort: void quicksort ( int a[ ], int lower, int upper ) { int i ; if ( upper > lower ) { i = split ( a,
Compare zero-address, one-address, two-address, and three-address machines by writing programs to compute: Y = (A – B X C) / (D + E X F) for each of the four machines. The inst
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd