Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Q. Which are the two standard ways of traversing a graph? Explain them with an example of each.
Ans:
The two ways of traversing a graph are written below
i. The depth-first traversal of a graph is same as the depth-first traversal of a tree. Since a graph does not have any root, when we do a depth-first traversal, we must specify the vertex at which to begin. Depth-first traversal of a graph visits a vertex and then recursively visits all the vertices adjacent to that particular node. The catch is that the graph may have cycles, but the traversal must visit each and every vertex at most once. The solution to the trouble is to keep track of the nodes that have been visited, so that the traversal does not undergo the fate of infinite recursion.
ii. The breadth-first traversal of a graph is same as the breadth-first traversal of the tree. Breadth-first tree traversal first of all visits all the nodes at the depth zero (which is the root), then it visits all the nodes at depth one, and this process continues. Since a graph does not has root, when we perform a breadth-first traversal, we should specify the vertex at which to start the traversal. Furthermore, we can define the depth of the given vertex to be the length of the shortest path from the starting vertex to the vertex given to us.
Hence, breadth-first traversal first visits the beginning vertex, then all the vertices adjacent to the starting vertex, and the all the vertices adjacent to those, and it continues.
How to creat ATM project by using double linked list?
Postorder traversal of a binary tree struct NODE { struct NODE *left; int value; /* can take any data type */ struct NODE *right; }; postorder(struct NODE
Using the cohen sutherland. Algorithm. Find the visible portion of the line P(40,80) Q(120,30) inside the window is defined as ABCD A(20,20),B(60,20),C(60,40)and D(20,40)
c program to represent a graph as an adjacency multilist form
complete information about collision resolution techniques
Normal 0 false false false EN-IN X-NONE X-NONE MicrosoftInternetExplorer4
Merging two sequence using CREW merge
Q. Write down an algorithm to convert an infix expression into the postfix expression. Ans. Algo rithm to convert infix expression to post fix expression is given as
Determine the greatest common divisor (GCD) of two integers, m & n. The algorithm for GCD might be defined as follows: While m is greater than zero: If n is greater than m, s
I=PR/12 numbers of years : Interest Rate up to 1 years : 5.50 Up to 5 years : 6.50 More than 5 year : 6.75 please design an algorithm based on the above information
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd