Standard trig equation, Mathematics

Assignment Help:

"Standard" trig equation: Now we need to move into a distinct type of trig equation. All of the trig equations solved to this point were, in some way, more or less the "standard" trig equation which is generally solved in a trig class. There are other kinds of equations involving trig functions though that we have to take a quick look at. The remaining examples illustrate some of these different kinds of trig equations.

Example   Solve 2 cos(6 y ) + 11cos (6 y ) sin (3 y ) = 0 .

Solution: Hence, definitely this doesn't look like any of the equations we've solved out to this point and initially the procedure is different as well. Firstly, notice that there is a cos(6 y ) in each term, so let's factor out that and see what we have.

                                            Cos(6 y ) (2 + 11sin (3 y )) = 0

Now we have a product of two terms which is zero and hence we know that we must have,

               Cos(6 y ) = 0       OR      2 + 11sin (3 y ) = 0

Now, at this instance we have two trig equations to solve out and each is identical to the type of equation we were solving earlier.  Due to this we won't put in much detail about solving these two equations.

Firstly, solving cos(6 y ) = 0 gives,

6 y = ?/2 + 2 ? n

                                                     y= ?/12 + ? n/3

                                                     y= ?/4 + ? n/3              n= 0, ±1, ±2,.........

6 y = 3?/2 + 2 ? n

Next, solving out 2 + 11sin (3 y) = 0 gives,

3 y = 6.1004 + 2 ? n             y= 2.0335+ 2 ? n /3         ⇒    n= 0, ±1, ±2,...........

3 y = 3.3244 + 2 ? n              y= 1.1081 + 2 ? n/3

In these notes we tend to take positive angles and hence the first solution here is in fact 2 ? - 0.1828 where our calculator provides us -0.1828 as the answer while using the inverse sine function.

The solutions to this equation are then,

y= ?/12 + ? n/3

y= ?/4 + ? n/3

y= 2.0335 + 2 ? n/3

y= 1.1081 + 2 ? n/3

 n=0, ±1, ±2,........


Related Discussions:- Standard trig equation

Modeling - nonhomogeneous systems, Under this section we're going to go bac...

Under this section we're going to go back and revisit the concept of modeling only now we're going to look at this in light of the fact as we now understand how to solve systems of

What percent of her money did she spend on lunch, Wendy brought $16 to the ...

Wendy brought $16 to the mall. She spent $6 on lunch. What percent of her money did she spend on lunch? Divide $6 by $16 to ?nd out the percent; $6 ÷ $16 = 0.375; 0.375 is equi

Differential equatoin, how to solve questions based on higher differential ...

how to solve questions based on higher differential equations

Example of hcf, Example  Find the Highest Common Factor of 54, 72...

Example  Find the Highest Common Factor of 54, 72 and 150. First we consider 54 and 72. The HCF for these two quantities is calculated as follows:

.fractions, what is the difference between North America''s part of the tot...

what is the difference between North America''s part of the total population and Africa''s part

Method of cylinders or method of shells, Method of cylinders or method of s...

Method of cylinders or method of shells The formula for the area in all of the cases will be,                                                        A = 2 ∏ ( radius ) (heig

Integrate even or odd function, Integrate following. ∫ -2   2 4x 4 - ...

Integrate following. ∫ -2   2 4x 4 - x 2   + 1dx Solution In this case the integrand is even & the interval is accurate so, ∫ -2   2 4x 4 - x 2   + 1dx = 2∫ o

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd