Standard trig equation, Mathematics

Assignment Help:

"Standard" trig equation: Now we need to move into a distinct type of trig equation. All of the trig equations solved to this point were, in some way, more or less the "standard" trig equation which is generally solved in a trig class. There are other kinds of equations involving trig functions though that we have to take a quick look at. The remaining examples illustrate some of these different kinds of trig equations.

Example   Solve 2 cos(6 y ) + 11cos (6 y ) sin (3 y ) = 0 .

Solution: Hence, definitely this doesn't look like any of the equations we've solved out to this point and initially the procedure is different as well. Firstly, notice that there is a cos(6 y ) in each term, so let's factor out that and see what we have.

                                            Cos(6 y ) (2 + 11sin (3 y )) = 0

Now we have a product of two terms which is zero and hence we know that we must have,

               Cos(6 y ) = 0       OR      2 + 11sin (3 y ) = 0

Now, at this instance we have two trig equations to solve out and each is identical to the type of equation we were solving earlier.  Due to this we won't put in much detail about solving these two equations.

Firstly, solving cos(6 y ) = 0 gives,

6 y = ?/2 + 2 ? n

                                                     y= ?/12 + ? n/3

                                                     y= ?/4 + ? n/3              n= 0, ±1, ±2,.........

6 y = 3?/2 + 2 ? n

Next, solving out 2 + 11sin (3 y) = 0 gives,

3 y = 6.1004 + 2 ? n             y= 2.0335+ 2 ? n /3         ⇒    n= 0, ±1, ±2,...........

3 y = 3.3244 + 2 ? n              y= 1.1081 + 2 ? n/3

In these notes we tend to take positive angles and hence the first solution here is in fact 2 ? - 0.1828 where our calculator provides us -0.1828 as the answer while using the inverse sine function.

The solutions to this equation are then,

y= ?/12 + ? n/3

y= ?/4 + ? n/3

y= 2.0335 + 2 ? n/3

y= 1.1081 + 2 ? n/3

 n=0, ±1, ±2,........


Related Discussions:- Standard trig equation

Determine the area of the shaded region, The diagram below shows the cross ...

The diagram below shows the cross section of a pipe  1/2  inch thick that has an inside diameter of 3 inches. Determine the area of the shaded region in terms of π. a. 8.75π i

Basic, is 1/6 same as six times less

is 1/6 same as six times less

Obtain the sum of the squares of values, This question is in the form of an...

This question is in the form of an exercise and questions designed to give you more insight into signal processing. On the Moodle site for the module there is an EXCEL file called

Definite integration-mathematics, Definite integration It involve integ...

Definite integration It involve integration among specified limits, say a and b The integral    is a definite integral whether the limits of integration are as: a and b

Objectives of learning to count, Objectives :  After studying this unit, y...

Objectives :  After studying this unit, you should be able to : 1.   explain the processes involved in counting; 2.   explain why the ability to recite number names is no in

Inflation , Inflation The inflation rate for a given period can be ca...

Inflation The inflation rate for a given period can be calculated using the following formula; Inflation = (current retail price index/retail price index in the base year)

Using pythagorean theorem to determine z, Two cars begin 500 miles apart.  ...

Two cars begin 500 miles apart.  Car A is into the west of Car B and begin driving to the east (that means towards Car B) at 35 mph & at the similar time Car B begin driving south

Modeling - nonhomogeneous systems, Under this section we're going to go bac...

Under this section we're going to go back and revisit the concept of modeling only now we're going to look at this in light of the fact as we now understand how to solve systems of

Derive the marshalian demand functions, (a) Derive the Marshalian demand fu...

(a) Derive the Marshalian demand functions for the following utility function: u(x 1 ,x 2 ,x 3 ) = x 1 + δ ln(x 2 )       x 1 ≥ 0, x 2 ≥ 0 Does one need to consider the is

Progressions, * 2^(1/2)*4^(1/8)*8^(1/16)*16^(1/32) =

* 2^(1/2)*4^(1/8)*8^(1/16)*16^(1/32) =

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd