Standard trig equation, Mathematics

Assignment Help:

"Standard" trig equation: Now we need to move into a distinct type of trig equation. All of the trig equations solved to this point were, in some way, more or less the "standard" trig equation which is generally solved in a trig class. There are other kinds of equations involving trig functions though that we have to take a quick look at. The remaining examples illustrate some of these different kinds of trig equations.

Example   Solve 2 cos(6 y ) + 11cos (6 y ) sin (3 y ) = 0 .

Solution: Hence, definitely this doesn't look like any of the equations we've solved out to this point and initially the procedure is different as well. Firstly, notice that there is a cos(6 y ) in each term, so let's factor out that and see what we have.

                                            Cos(6 y ) (2 + 11sin (3 y )) = 0

Now we have a product of two terms which is zero and hence we know that we must have,

               Cos(6 y ) = 0       OR      2 + 11sin (3 y ) = 0

Now, at this instance we have two trig equations to solve out and each is identical to the type of equation we were solving earlier.  Due to this we won't put in much detail about solving these two equations.

Firstly, solving cos(6 y ) = 0 gives,

6 y = ?/2 + 2 ? n

                                                     y= ?/12 + ? n/3

                                                     y= ?/4 + ? n/3              n= 0, ±1, ±2,.........

6 y = 3?/2 + 2 ? n

Next, solving out 2 + 11sin (3 y) = 0 gives,

3 y = 6.1004 + 2 ? n             y= 2.0335+ 2 ? n /3         ⇒    n= 0, ±1, ±2,...........

3 y = 3.3244 + 2 ? n              y= 1.1081 + 2 ? n/3

In these notes we tend to take positive angles and hence the first solution here is in fact 2 ? - 0.1828 where our calculator provides us -0.1828 as the answer while using the inverse sine function.

The solutions to this equation are then,

y= ?/12 + ? n/3

y= ?/4 + ? n/3

y= 2.0335 + 2 ? n/3

y= 1.1081 + 2 ? n/3

 n=0, ±1, ±2,........


Related Discussions:- Standard trig equation

If tan2x.tan7x=1 , tan9x = (tan7x + tan2x)/(1 - tan7x*tan2x) here its give...

tan9x = (tan7x + tan2x)/(1 - tan7x*tan2x) here its given 1 - tan2x*tan7x= 0 implies tan9x = infinity since tan9x = (3tan3x - tan^3(3x))/(1 - 3tan^2 (3x)) = infinity implies

NUMERABILITY, AFIGURE THIS OUT(3) (14) (17) (20) (25)= 8 WHAT ARE THE PROC...

AFIGURE THIS OUT(3) (14) (17) (20) (25)= 8 WHAT ARE THE PROCEDURES (-)(+)(x)(div) BETWEEN EACH NUMBER TO COME UP WITH 8 ?

Simplex table, maximize Z=2x+5y+7z, subject to constraints : 3x+2y+4z =0

maximize Z=2x+5y+7z, subject to constraints : 3x+2y+4z =0

4.4238/[1.047+{1.111*[9.261/7.777]}*1.01, Ask question #Min 4.4238/[1.047+{...

Ask question #Min 4.4238/[1.047+{1.111*[9.261/7.777]}*1.01

Rectilinear figure, what is a redtilinear figure? like what are for the req...

what is a redtilinear figure? like what are for the requirments for a shape to be called that? example a regular polygon has all sides and angles equal. i cant find that kind of dr

Hypothesis testing of the difference between proportions, Hypothesis Testin...

Hypothesis Testing Of The Difference Between Proportions Illustration Ken industrial producer have manufacture a perfume termed as "fianchetto." In order to test its popul

BOUNDARY VALUE PROBLEM, Ut=Uxx+A exp(-bx) u(x,0)=A/b^2(1-exp(-bx)) u(0,t)=0...

Ut=Uxx+A exp(-bx) u(x,0)=A/b^2(1-exp(-bx)) u(0,t)=0 u(1,t)=-A/b^2 exp(-b)

Polynomials, find a quadratic polynomial whose zeroes are 2 and -6.verify t...

find a quadratic polynomial whose zeroes are 2 and -6.verify the relationship between the coefficients and zeroes of the polynomial

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd