Standard normal distribution, Mathematics

Assignment Help:

Q. Describe Standard Normal Distribution?

Ans.

The Standard Normal Distribution has a mean of 0 and a standard deviation of 1. The letter Z is often used to refer to a standard normal random variable.

Note that, although many applications in the real world have a normal distribution, rarely does anything in the real world follow a standard normal distribution. This is a convenient distribution that can be used (after some transformations) for ANY normal distribution. In the following examples, we will work through finding probabilities for a standard normal random variable.

Click here to see a table with probabilities for the standard normal distribution.

The area under the curve, the shaded area in this diagram, represents the probability of a normally distributed random variable obtaining a value less than z,1391_Standard Normal Distribution1.gif.

735_Standard Normal Distribution.gif

The entries in the table are the probabilities that a random variable having the standard normal distribution assumes a value less than z.


Related Discussions:- Standard normal distribution

Calculus, I need an explanation of "the integral, from b to a, of the deriv...

I need an explanation of "the integral, from b to a, of the derivative of f (x). and, the integral from a to b. of the derivative of f(t) dt.

Evaluate the log function, Evaluate the log function: Calculate 3log 1...

Evaluate the log function: Calculate 3log 10 2. Solution: Rule 3.             log  (A n ) = nlog b   A 3log 10  2 = log 10 (2 3 ) = log 10   8 = 0.903

Construction, draw a equilateral triangle with length of side 6.5 cm. and l...

draw a equilateral triangle with length of side 6.5 cm. and let us draw a parallelogram equal in area to that triangle and having an angle 45 degree

Determine the size of the proposed repayments, Five years ago a business bo...

Five years ago a business borrowed $100,000 agreeing to repay the principal and all accumulated interest at 8% pa compounded quarterly, 8 years from the loan date. Two years after

Algebra, Manuel is a cross-country runner for his school’s team. He jogged ...

Manuel is a cross-country runner for his school’s team. He jogged along the perimeter of a rectangular field at his school. The track is a rectangle that has a length that is 3 tim

Derivatives of inverse trig function, Derivatives of Inverse Trig Functions...

Derivatives of Inverse Trig Functions : Now, we will look at the derivatives of the inverse trig functions. To derive the derivatives of inverse trig functions we'll required t

Law of cosines - vector, Theorem a → • b → = ||a → || ||b → || cos• ...

Theorem a → • b → = ||a → || ||b → || cos• Proof Let us give a modified version of the diagram above. The three vectors above make the triangle AOB and note tha

Parallel vectors - applications of scalar multiplication, Parallel Vectors ...

Parallel Vectors - Applications of Scalar Multiplication This is an idea that we will see fairly a bit over the next couple of sections.  Two vectors are parallel if they have

Slope-intercept form, Slope-intercept form The ultimate special form of...

Slope-intercept form The ultimate special form of the equation of the line is possibly the one that most people are familiar with.  It is the slope-intercept form.  In this if

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd