Stacks, Data Structure & Algorithms

Assignment Help:

Q. Explain what are the stacks? How can we use the stacks  to check whether an expression is correctly parentheses or not. For example (()) is well formed but (() or )()( is not well formed.

 

Ans:

The stack is a data structure that organizes data in a similar way one organizes a pile of coins. The new coin is all the time placed on the top and the oldest is on the bottom of the stack. When we are accessing coins, the last coin on the pile is the first coin which was removed from the stack. If we want to reach the third coin, we should remove the first two coins from the top of the stack first so that the third coin comes on the top of the stack and we can easily remove it. There is no way at all to remove a coin from anywhere other than the top of the stack.

A stack is useful whenever we need to store data and retrieve data in last in, first out order. Let us take an example the computer processes instructions using a stack in which the next instruction to execute is at the top of the stack.

To determine whether an expression is well parentheses or not:- the two conditions should be fulfilled while pushing an expression into a stack. At first, whenever an opening bracket is pushed inside a stack, there should be an occurrence a closing bracket before we reach the last symbol. Whenever a closing bracket is encountered, the top of the stack is popped until the opening bracket is popped out and discarded. If no such type of opening bracket is found and stack is made empty, then this means that the expression is not well parentheses designed.

An algorithm to check that whether an expression is correctly parenthized or not is written below:

flag=TRUE;

clear the stack;

Read a symbol from input string;

while not end of input string and flag do

{

if(symbol= '( ' or symbol= '[' or symbol = '{' )

push(symbol,stack);

else  if(symbol= ') ' or symbol= '[' or symbol =

'{' )

if stack is empty flag=false;

printf("More right parenthesis than left

parenthises");

else c=pop(stack);

match c and the input symbol; If not matched

{     flag=false;

printf("Mismatched

parenthesis");

}

Read the next input symbol;

}

if stack is empty then

printf("parentheses are balanced properly");

else

printf(" More number of left parentheses than right parentheses");

 


Related Discussions:- Stacks

Sparse matrices, SPARSE MATRICES Matrices along with good number of zer...

SPARSE MATRICES Matrices along with good number of zero entries are called sparse matrices. Refer the following matrices of Figure (a)

State the example of pre- and post-conditions, State the example of pre- an...

State the example of pre- and post-conditions Suppose that function f(x) should have a non-zero argument and return a positive value. We can document these pre- and post-condit

Storing street addresses with doubly linked lists, Write a C++ program with...

Write a C++ program with header and source les to store street addresses using the Doubly Linked List ADT. Modify the Node class from Lab Assignment 3 so that it becomes a node in

Applications in file systems of avl trees, 1. In computer science, a classi...

1. In computer science, a classic problem is how to dynamically store information so as to let for quick look up. This searching problem arises frequently in dictionaries, symbol t

Infix notation to postfix notation, Which data structure is required to cha...

Which data structure is required to change infix notation to postfix notation?    Stack function is used to change infix notation to postfix notatio n

If-then-else statements, In this example, suppose the statements are simple...

In this example, suppose the statements are simple unless illustrious otherwise. if-then-else statements if (cond) { sequence of statements 1 } else { sequence of st

Maximum degree of any vertex in a simple graph, The maximum degree of any v...

The maximum degree of any vertex in a simple graph with n vertices is (n-1) is the maximum degree of the vertex in a simple graph.

Depth first search and breadth first search, Q. Illustrate the result of ru...

Q. Illustrate the result of running BFS and DFS on the directed graph given below using vertex 3 as source.  Show the status of the data structure used at each and every stage.

Define the internal path length, Define the Internal Path Length The In...

Define the Internal Path Length The Internal Path Length I of an extended binary tree is explained as the sum of the lengths of the paths taken over all internal nodes- from th

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd