Stacks, Data Structure & Algorithms

Assignment Help:

Q. Explain what are the stacks? How can we use the stacks  to check whether an expression is correctly parentheses or not. For example (()) is well formed but (() or )()( is not well formed.

 

Ans:

The stack is a data structure that organizes data in a similar way one organizes a pile of coins. The new coin is all the time placed on the top and the oldest is on the bottom of the stack. When we are accessing coins, the last coin on the pile is the first coin which was removed from the stack. If we want to reach the third coin, we should remove the first two coins from the top of the stack first so that the third coin comes on the top of the stack and we can easily remove it. There is no way at all to remove a coin from anywhere other than the top of the stack.

A stack is useful whenever we need to store data and retrieve data in last in, first out order. Let us take an example the computer processes instructions using a stack in which the next instruction to execute is at the top of the stack.

To determine whether an expression is well parentheses or not:- the two conditions should be fulfilled while pushing an expression into a stack. At first, whenever an opening bracket is pushed inside a stack, there should be an occurrence a closing bracket before we reach the last symbol. Whenever a closing bracket is encountered, the top of the stack is popped until the opening bracket is popped out and discarded. If no such type of opening bracket is found and stack is made empty, then this means that the expression is not well parentheses designed.

An algorithm to check that whether an expression is correctly parenthized or not is written below:

flag=TRUE;

clear the stack;

Read a symbol from input string;

while not end of input string and flag do

{

if(symbol= '( ' or symbol= '[' or symbol = '{' )

push(symbol,stack);

else  if(symbol= ') ' or symbol= '[' or symbol =

'{' )

if stack is empty flag=false;

printf("More right parenthesis than left

parenthises");

else c=pop(stack);

match c and the input symbol; If not matched

{     flag=false;

printf("Mismatched

parenthesis");

}

Read the next input symbol;

}

if stack is empty then

printf("parentheses are balanced properly");

else

printf(" More number of left parentheses than right parentheses");

 


Related Discussions:- Stacks

What is complexity, Complexity is the rate at which the needed storage or c...

Complexity is the rate at which the needed storage or consumed time rise as a function of the problem size. The absolute growth based on the machine utilized to execute the program

Programme in c to create a single linked list, Q. Write  down a   p...

Q. Write  down a   programme  in  C  to  create  a  single  linked  list also  write the functions to do the following operations (i)  To insert a new node at the end (ii

Multiplication, Implement multiple stacks in a single dimensional array. Wr...

Implement multiple stacks in a single dimensional array. Write algorithms for various stack operations for them.

Construct a minimum spanning tree, Construct G for α, n, and W given as com...

Construct G for α, n, and W given as command line parameters. Throw away edges that have an asymmetric relation between nodes. That is, if A is connected to B, but B is not connect

Procedures, what is far and near procedures in system programming?

what is far and near procedures in system programming?

Representation of arrays, REPRESENTATION OF ARRAYS This is not uncommon...

REPRESENTATION OF ARRAYS This is not uncommon to determine a large number of programs which procedure the elements of an array in sequence. However, does it mean that the eleme

What do you mean by hash clash, What do you mean by hash clash? Hashing...

What do you mean by hash clash? Hashing is not perfect. Occasionally, a collision occurs when two different keys hash into the same hash value and are assigned to the same arra

All pairs shortest paths, N = number of rows of the graph D[i[j] = C[i][...

N = number of rows of the graph D[i[j] = C[i][j] For k from 1 to n Do for i = 1 to n Do for j = 1 to n D[i[j]= minimum( d ij (k-1) ,d ik (k-1) +d kj (k-1)

Row major representation, Row Major Representation In memory the primar...

Row Major Representation In memory the primary method of representing two-dimensional array is the row major representation. Under this representation, the primary row of the a

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd