Stacks, Data Structure & Algorithms

Assignment Help:

Q. Explain what are the stacks? How can we use the stacks  to check whether an expression is correctly parentheses or not. For example (()) is well formed but (() or )()( is not well formed.

 

Ans:

The stack is a data structure that organizes data in a similar way one organizes a pile of coins. The new coin is all the time placed on the top and the oldest is on the bottom of the stack. When we are accessing coins, the last coin on the pile is the first coin which was removed from the stack. If we want to reach the third coin, we should remove the first two coins from the top of the stack first so that the third coin comes on the top of the stack and we can easily remove it. There is no way at all to remove a coin from anywhere other than the top of the stack.

A stack is useful whenever we need to store data and retrieve data in last in, first out order. Let us take an example the computer processes instructions using a stack in which the next instruction to execute is at the top of the stack.

To determine whether an expression is well parentheses or not:- the two conditions should be fulfilled while pushing an expression into a stack. At first, whenever an opening bracket is pushed inside a stack, there should be an occurrence a closing bracket before we reach the last symbol. Whenever a closing bracket is encountered, the top of the stack is popped until the opening bracket is popped out and discarded. If no such type of opening bracket is found and stack is made empty, then this means that the expression is not well parentheses designed.

An algorithm to check that whether an expression is correctly parenthized or not is written below:

flag=TRUE;

clear the stack;

Read a symbol from input string;

while not end of input string and flag do

{

if(symbol= '( ' or symbol= '[' or symbol = '{' )

push(symbol,stack);

else  if(symbol= ') ' or symbol= '[' or symbol =

'{' )

if stack is empty flag=false;

printf("More right parenthesis than left

parenthises");

else c=pop(stack);

match c and the input symbol; If not matched

{     flag=false;

printf("Mismatched

parenthesis");

}

Read the next input symbol;

}

if stack is empty then

printf("parentheses are balanced properly");

else

printf(" More number of left parentheses than right parentheses");

 


Related Discussions:- Stacks

Big o notation, This notation gives an upper bound for a function to within...

This notation gives an upper bound for a function to within a constant factor. Given Figure illustrates the plot of f(n) = O(g(n)) depend on big O notation. We write f(n) = O(g(n))

Multiple stacks in a single array, implement multiple stacks in an array an...

implement multiple stacks in an array and write different algorithms to perform operations on it

How do collisions happen during hashing, How do collisions happen during ha...

How do collisions happen during hashing? Usually the key space is much larger than the address space, thus, many keys are mapped to the same address. Assume that two keys K1 an

Hash function, Q. Define the graph, adjacency matrix, adjacency list, hash ...

Q. Define the graph, adjacency matrix, adjacency list, hash function, adjacency matrix, sparse matrix, reachability matrix.

Program on radix sort., Write a program that uses the radix sort to sort 10...

Write a program that uses the radix sort to sort 1000 random digits. Print the data before and after the sort. Each sort bucket should be a linked list. At the end of the sort, the

Explain optimal binary search trees, Explain Optimal Binary Search Trees ...

Explain Optimal Binary Search Trees One of the principal application of Binary Search Tree is to execute the operation of searching. If probabilities of searching for elements

Non-recursive algorithm to traverse a tree in preorder, Write the non-recur...

Write the non-recursive algorithm to traverse a tree in preorder.    The Non- Recursive algorithm for preorder traversal is as follows: Initially  push NULL onto stack and

The complexity ladder, The complexity Ladder: T(n) = O(1). It is ca...

The complexity Ladder: T(n) = O(1). It is called constant growth. T(n) does not raise at all as a function of n, it is a constant. For illustration, array access has this c

Determine the types of java, Determine the types of JAVA Java has two p...

Determine the types of JAVA Java has two parts... 1. Core language -- variables, arrays, objects o Java Virtual Machine (JVM) runs the core language o Core language is

Nothing, c++ To calculate the amount to be paid by a customer buying yummy ...

c++ To calculate the amount to be paid by a customer buying yummy cupcakes for his birth day party

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd