Stacks, Data Structure & Algorithms

Assignment Help:

Q. Explain what are the stacks? How can we use the stacks  to check whether an expression is correctly parentheses or not. For example (()) is well formed but (() or )()( is not well formed.

 

Ans:

The stack is a data structure that organizes data in a similar way one organizes a pile of coins. The new coin is all the time placed on the top and the oldest is on the bottom of the stack. When we are accessing coins, the last coin on the pile is the first coin which was removed from the stack. If we want to reach the third coin, we should remove the first two coins from the top of the stack first so that the third coin comes on the top of the stack and we can easily remove it. There is no way at all to remove a coin from anywhere other than the top of the stack.

A stack is useful whenever we need to store data and retrieve data in last in, first out order. Let us take an example the computer processes instructions using a stack in which the next instruction to execute is at the top of the stack.

To determine whether an expression is well parentheses or not:- the two conditions should be fulfilled while pushing an expression into a stack. At first, whenever an opening bracket is pushed inside a stack, there should be an occurrence a closing bracket before we reach the last symbol. Whenever a closing bracket is encountered, the top of the stack is popped until the opening bracket is popped out and discarded. If no such type of opening bracket is found and stack is made empty, then this means that the expression is not well parentheses designed.

An algorithm to check that whether an expression is correctly parenthized or not is written below:

flag=TRUE;

clear the stack;

Read a symbol from input string;

while not end of input string and flag do

{

if(symbol= '( ' or symbol= '[' or symbol = '{' )

push(symbol,stack);

else  if(symbol= ') ' or symbol= '[' or symbol =

'{' )

if stack is empty flag=false;

printf("More right parenthesis than left

parenthises");

else c=pop(stack);

match c and the input symbol; If not matched

{     flag=false;

printf("Mismatched

parenthesis");

}

Read the next input symbol;

}

if stack is empty then

printf("parentheses are balanced properly");

else

printf(" More number of left parentheses than right parentheses");

 


Related Discussions:- Stacks

Applications of binary trees, In computer programming, Trees are utilized ...

In computer programming, Trees are utilized enormously. These can be utilized for developing database search times (binary search trees, AVL trees, 2-3 trees, red-black trees), Gam

Explain all-pair shortest-paths problem, Explain All-pair shortest-paths pr...

Explain All-pair shortest-paths problem Given a weighted linked graph (undirected or directed), the all pairs shortest paths problem asks to find the distances (the lengths of

Compute the shortest paths to all network nodes, (i)  Consider a system usi...

(i)  Consider a system using flooding with hop counter. Suppose that the hop counter is originally set to the "diameter" (number of hops in the longest path without traversing any

Binary search trees, In this unit, we discussed Binary Search Trees, AVL tr...

In this unit, we discussed Binary Search Trees, AVL trees and B-trees. The outstanding feature of Binary Search Trees is that all of the elements of the left subtree of the root

B-tree, Draw a B-tree of order 3 for the following sequence of keys: 2,4,9,...

Draw a B-tree of order 3 for the following sequence of keys: 2,4,9,8,7,6,3,1,5,10.and delete 8 and 10

How many nodes in a tree have no ancestor, How many nodes in a tree have no...

How many nodes in a tree have no ancestors 1 node in atree have no ancestors.

Graph traversal, 1) Which graph traversal uses a queue to hold vertices whi...

1) Which graph traversal uses a queue to hold vertices which are to be processed next ? 2) Which of the graph traversal is recursive by nature? 3) For a dense graph, Prim's a

Complexity, Complexity : How do the resource needs of a program or algorith...

Complexity : How do the resource needs of a program or algorithm scale (the growth of resource requirements as a function of input). In other words, what happens with the performan

Addressing modes, Compare zero-address, one-address, two-address, and three...

Compare zero-address, one-address, two-address, and three-address machines by writing programs to compute: Y = (A – B X C) / (D + E X F) for each of the four machines. The inst

Explain principle of optimality, Explain principle of Optimality It ind...

Explain principle of Optimality It indicates that an optimal solution to any instance of an optimization problem is composed of  optimal solutions to its subinstances.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd